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Preface

In recent years, the potential for Artiåcial Intelligence (AI) to bring about innova-
tions in surgical techniques has garnered signiåcant attention. While there are 
already some practical applications of AI systems in diagnostic åelds, including 
medical imaging analysis, the utilization of AI in surgical operations remains an 
ongoing research topic. As this trend progresses, it's increasingly likely that surger-
ies assisted by AI could become commonplace in future clinical settings.

To implement AI in surgical procedures, there are several challenges and issues 
that must be addressed. Standardization of the vast amount of medical data, as well 
as its secure management, is imperative. Moreover, the cybersecurity of Internet of 
Things (IoT) technologies, which enable integration with medical devices, faces 
unique and stringent requirements different from those in other industries. Added to 
these are the complexities unique to the medical åeld, including personal and 
genetic data protection and legal regulations.

This book focuses on the intersection of cutting-edge technology and clinical 
medicine in the surgical åeld, offering multifaceted discussions on data standardiza-
tion, legal regulations, and security. In each chapter, experts specializing in related 
topics provide an in-depth look at the subject matter and offer important insights 
into the research and development of AI-assisted surgery. Furthermore, practical 
clinical examples will be presented to illustrate the application of each theme.

The primary audience for this book includes biomedical engineers, students, AI 
developers, and healthcare professionals interested in AI-assisted surgery. Although 
the book does not go into detail about the fundamentals of medicine or engineering, 
it serves as a useful resource for those wishing to deepen their basic knowledge in 
topics that interest them. Ultimately, we hope that this book will contribute widely 
to all those involved in the research and development of AI-assisted surgery.

Tokyo, Japan Ken Masamune   
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Introduction/Deånition of “AI Surgery”

Ken Masamune, Kaori Kusuda, and Yoshihiro Muragaki

Abstract In this chapter introducing AI surgery, the close relationship between 
medicine and technology is explored, along with the evolution of medical informa-
tion and the integration of artiåcial intelligence with peripheral technologies such as 
IT, IoT, and robotics. Patient-derived biometrics play a critical role in surgical 
decision- making, highlighting the need for seamless intraoperative information 
exchange in the future. As a result, research and development efforts for smart cyber 
ORs and related technologies are ongoing, driving the accumulation of valuable 
data. In addition, the advancement of innovative technologies, including AI surgery, 
follows three types of approaches: needs-driven, seed-driven, and concept-driven. 
The development of novel medical devices requires synergies between emerging 
technologies and medical expertise, shaping the landscape for the next generation of 
surgical procedures. The emergence of transformative technologies such as AI and 
VR, along with the concept of smart therapy devices, will have a profound impact 
on the trajectory of AI surgery in the future.

Keywords Artiåcial intelligence · Regulation · Software as a medical device · 
Computer-aided diagnosis · Computer-aided surgery

1  Introduction

1.1  Quality of Medical Care and the Relation of Science 
and Technology

The quality of medical care will improve with the development of science, engi-
neering, and technology. In particular, X-ray imaging technology, which was 
invented in the latter half of the nineteenth century, has made a big leap forward in 
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medical care, and many medical devices have been developed for the measurement 
of biological information such as blood pressure, electrocardiogram, CT, MRI, 
ultrasound imaging, and so on. In the latter half of the twentieth century, the digiti-
zation of information progressed, and IT, IoT, and robot technology began to be 
applied in the medical domain. Furthermore, the convergence of mixed reality and 
artiåcial intelligence (AI) is rapidly penetrating the åeld of medicine.

For example, X-ray images taken with conventional ålm have migrated to a 
digital format, allowing information to be stored as digital data. In addition, the 
traditional paper-based medical records containing patient information have 
been digitized through the widespread use of personal computers, and network-
connected online medical records are becoming more widespread. Furthermore, 
the widespread availability of the Internet has played a key role in the increasing 
digitization of information. This, coupled with the miniaturization of informa-
tion display devices such as mobile phones and smart phones, has been seam-
lessly integrated into the medical care environment. As a result, it is now easier 
to transmit medical information to remote health facilities through network con-
nections. Furthermore, the accumulation of digitized medical big data is begin-
ning to open up the possibility of achieving automated image-interpreted 
diagnosis and AI-driven pathological diagnosis. These developments promise to 
streamline the diagnostic process and improve accuracy through the use of artiå-
cial intelligence. In addition, telemedicine and epoch-making surgery support 
systems have been developed through the collection and use of medical informa-
tion by surgery support robots and IoT, and the use of the next-generation com-
munications standard 5G has begun, which is helping to improve the quality of 
medical care [1–3].

1.2  Information in Medicine

Before looking at the latest developments in the healthcare sector, let’s take an over-
view of what medical information is. Generally, “medical information” refers to a 
range of data on a patient’s health. This includes personal information such as the 
patient’s name, date of birth, address, and contact details, as well as records of inter-
actions with the doctor during the consultation. It also includes medical information 
such as test results, anesthesia records, and treatments received during surgery. It 
also includes records of post-operative rehabilitation and progress reports. In diag-
nosis and treatment, doctors rely on a variety of preoperative and past medical infor-
mation, as well as information obtained directly from the patient, in order to make 
informed decisions.

This information will be used as scientiåc evidence for the next new patient. The 
doctor’s own knowledge, experience, and skill, the patient’s values about treatment, 
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Fig. 1 Data æow of biological signals: continuity from raw biological signals generated by the 
patient to multiple source data for decision-making by the surgeon

family situation, and quality of life are taken into account when making the ånal deci-
sion. Such informed, scientiåcally based medicine is one form of evidence- based medi-
cine (EBM) and is an important concept underpinning current healthcare [4].

Medical information includes not only medical information directly related to 
patients, such as diagnostic support, treatment support, and rehabilitation support, 
but also nursing and pharmaceutical information, such as dispensing support, 
nursing admission management, medical equipment inventory and logistics man-
agement, and patient services owned by hospitals. It refers to an extremely wide 
range of information, including electronic medical records for management and 
administration, medical accounting systems, and booking systems. This publica-
tion focuses on the most advanced parts of these, particularly in the periopera-
tive period.

The æow of medical information in the operating theater, from biological signals 
obtained from the patient to the ånal information required for diagnostic and thera-
peutic decisions, is summarized in Fig. 1.

The patient, or human body, is composed of living tissue from which various 
biological signals are generated. The distribution of each organ in the body, as well 
as biological signals such as heartbeat, blood pressure, respiration, etc., is sampled 
and quantiåed by medical equipment. The quantiåed measurement signals are 
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digitized, but are themselves mere data and have no clinical usefulness or other 
signiåcance. Meaningful information can only be obtained through statistical analy-
sis and threshold setting using the patient’s medical history and data accumulated in 
the past from patients with the same disease. This is called “informatization,” and 
only through informatization does information become meaningful information. 
Final decisions and judgments are not made solely on the basis of information, but 
by the physician based on multiple pieces of information and his experience.

In “informatization,” data connectivity and standardization of data formats are 
important for the further development of medical technology. This is because, as 
mentioned in the previous section regarding the wide scope of medical information, 
data is often closed to each system or hospital and cannot be used across different 
software that stores the data. Therefore, it is difåcult to share data processed for dif-
ferent purposes. One way to solve this problem is to implement a smart cyber oper-
ating room (SCOT), which is the focus of this document [5, 6]. A smart OR can 
network medical information from each device in the OR and store the data in a 
common time-synchronous format.

If data is standardized, it will be possible to share data not only between speciåc 
hospitals but also between hospitals around the world, and statistics, learning, and 
prediction with more information may lead to more accurate treatment. Of course, 
legislation for the protection of personal data is being developed in many countries, 
and adequate measures need to be taken for information management and informa-
tion security of the data to be collected. You will also read in this book that the 
Society 5.0 [7] initiative will make a signiåcant contribution to healthcare.

1.3  Surgeon’s New “Hands,” “Eyes,” and “Brain”

Not limited to information technology, advanced technologies in multiple åelds are 
being researched and developed to support diagnosis and treatment. Here, the functional 
classiåcation of technologies to assist surgeons can be broadly divided into “new hands,” 
“new eyes,” and “new brain.” “The new eyes” is the technology for the information 
acquisition/presentation for the surgeon. New brains are rapid information processing 
and learning predictive technologies for decision making. And new hands are the 
machines, robots, and other technologies that augment and improve the ability of the 
surgeon’s hands [8]. For each technology, advanced information technology including 
AI will be used in the future, resulting in some level of autonomous surgery.

1.4  Needs-Driven/Seeds-Driven (Tech-Push)/Concept-Driven 
Medical Device Development

Research and development in medical devices have received a great deal of atten-
tion, and, as this publication shows, a great deal of research is being carried out with 
excellent state-of-the-art technology and technological development capabilities. 
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On the other hand, one output of research and development is marketing as a medi-
cal device product. There are not many cases that start with basic research in aca-
demia and end up in commercialization. Medical device development differs from 
mere manufacturing in its peculiarities, which involve examination and licensing. 
The key to the future development of this åeld is the training of personnel who can 
promote research and development based on a bird’s eye view of the manufacturing 
and marketing system for medical devices, including clinical trials, approval proce-
dures, insurance reimbursement, distribution, and sales. Pharmaceutical and medi-
cal device regulations and standardization of medical devices using AI are also 
currently being actively discussed [9, 10].

Medical device development, which explores medical needs and considers com-
mercialization based on these needs, is known as “needs-driven.” Stanford 
University’s “Biodesign” program, which systematizes a needs-driven approach to 
medical device development, is well known [11], where, for example, new catheters 
are developed and commercialized. On the other hand, it is also important to develop 
“seeds-driven” where new technologies and ideas such as robots and AI lead to new 
medical treatment, and medical treatment using the latest technology covered in this 
book will continue in the future.

Yet another approach is “concept-driven medical device development,” in which 
a major treatment concept is set, and various R&D efforts are directed toward it, 
leading to a future medical revolution. For example, in cancer treatment, the con-
cept of double-targeting therapy, which combines a highly tumor-accumulating 
drug with a physical force that acts only within the tumor, has been proposed. One 
solution is sonodynamic therapy (SDT), a concept-driven approach that combines 
drug delivery system (DDS) drugs and focused ultrasound (HIFU) to control cancer 
and tumors deep within the body. The resulting treatment is expected to reduce 
systemic side effects due to tumor accumulation and increase anti-tumor efåcacy, 
which is not possible before [12].

AI technology will become increasingly necessary to realize these new develop-
ment concepts.

1.5  Summary

This book summarizes the latest medical innovation trends focusing on medical big 
data, AI technology, AR/VR technology, and high-speed mobile communication 
technology, which are particularly important in the progress of medical care by the 
latest technology as mentioned above. The smart cyber operating theater was also 
discussed as a current status and trend in information infrastructure technology con-
tributing to high-risk treatment in AI surgery.

Introduction/Deånition of “AI Surgery”
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The intended audience for this publication is the following:

• Engineers and researchers considering the application of AI, image processing 
technology, and AR/VR technology to the medical åeld.

• Technicians, researchers, or medical professionals who handle medical big data.
• Management level of hospitals with operating theaters.

This publication is a collection of topics on the use of AI, which is currently 
being increasingly used, in high-risk surgical procedures. In addition, generative AI, 
such as ChatGPT, has begun to evolve in recent years. For example, the research of 
[13] presents its performance on surgical knowledge questions and assessed the 
stability of this performance on repeat queries. And more, each of these AI tech-
nologies will be linked by generative AI and further linked to robotics and other 
technologies, leading to more advanced AI surgery. It is greatly hoped that this 
publication will help in new research and development.
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Development of AI Analysis Platform—
Smart Cyber Operating Theater (SCOT)—
For Medical Information in Neurosurgery

Kaori Kusuda, Jun Okamoto, Yoshihiro Muragaki, and Ken Masamune

Abstract Most medical data are stored in electronic medical records and recorded 
as text because there are individual differences in patients and pathological condi-
tions. AI researchers decipher the information necessary for research from these 
data to create a dataset manually. Tokyo Women’s Medical University has built a 
surgical prognosis management system, the Clinical Information Analyzer (CIA). 
This system consists of three functions: cleansing and accumulating medical data, 
analyzing data, and feeding back the analysis results to doctors. Additionally, the 
prognosis of patients who have undergone brain tumor resection will be proposed 
using AI and data of CIA system. Two models, “survival prognosis” and “functional 
prognosis,” will be developed as prognosis prediction models. In the future, we 
would like to use this follow-up information to improve the accuracy of prognostic 
prediction.

Keywords Medical informatics · Neurosurgery · Electronic medical record · 
Prediction model

1  Introduction

In recent medical AI research, topics involving the use of medical images have 
become mainstream. Recently published studies have explored AI-based detection 
of lung lesions from X-ray [1] images and segmentation of brain tumors from mag-
netic resonance imaging (MRI) images [2]. Additionally, an automatic extraction 
model was developed to locate cerebral aneurysms from MRI images [3]. A feature 
of image-based AI studies is that the size and imaging methods are almost uniform; 
therefore, it is possible to obtain standardized images. Owing to the large number of 
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training images that can be created, the accuracy of this model tends to be as 
high as 90%.

On the other hand, models created by AI studies using medical data tend to be 
inferior in accuracy to medical image-based models. This can be attributed to the 
presence of various data defects and the unstructured nature of data [4, 5]. Most 
medical data are stored in electronic medical records and recorded as text because 
there are individual differences in patients and pathological conditions. AI research-
ers decipher the information necessary for research from these data to create a data-
set manually.

Recently, blood test values and digital data from medical devices have been 
structured and stored in various databases. However, many items that require the 
professional judgment of medical staff (doctors, nurses, laboratory technicians) 
have not yet been structured, mainly because the purpose of electronic medical 
records is practical, and not meant for research. Since electronic medical records are 
created for the purpose of medical support, recording detailed items necessary for 
research, even in daily workæow, may be burdensome and time-consuming. To 
accelerate medical AI research, gathering the knowledge of medical staff and accu-
mulating it as structured data is necessary.

2  Neurosurgery with AI

Tokyo Women’s Medical University has built a surgical prognosis management sys-
tem and has accumulated clinical information on over 2000 cases of brain tumor 
surgery since 2000. This system facilitates the management of inpatient data in the 
clinical workæow. In addition, basic patient information, such as surgery date, pres-
ence or absence of recurrence, pathology (WHO classiåcation, genotype), and fol-
low- up data, such as survival days, have been recorded. Our group has used these 
structured data in clinical research.

Saito et al. evaluated whether the results of motor evoked potentials (MEP) and 
intraoperative voluntary movement (IVM) during surgery could help predict post-
operative motor function [6]. Awake surgery was performed to remove tumors 
around the motor and verbal areas. In this surgical method, the patient is awakened 
after craniotomy, and the motor and language functions are conårmed. The tumor is 
removed while checking MEP and IVM to determine the occurrence of functional 
site damage. As a result, it was found that the magnitude of the rate of decrease in 
these values is related to the level of decrease in motor function after surgery.

Shibahara et al. considered the predictive potential of blood cell count in the 
myelosuppression process caused by ACNU, using machine learning and basic 
patient and medical data before treatment as learning data in chemotherapy for gli-
oma (ACNU therapy) [7]. Traditionally, doctors predict myelosuppression, which is 
a side effect of ACNU, and change medication dose according to the rule of thumb. 
Based on the results of this study, appropriate drug administration can be performed 
according to the clinical data of the patient before treatment.

K. Kusuda et al.

https://pezeshkibook.com



11

Matsui et al. developed a model for predicting pathological diagnoses using posi-
tron emission tomography (PET) and computed tomography (CT) images and basic 
patient information on a surgical prognosis management system [8]. Conventionally, 
invasive sample acquisition, such as biopsy and surgery, is indispensable for the 
deånitive diagnosis of tumor grade and genotype. Based on the results of this study, 
pathological results can be predicted from preoperative images, and invasive medi-
cal practices can be reduced. Furthermore, in cases where tumors adjacent to the 
speech and motor areas are removed, dysfunction can be prevented, and the patient’s 
quality of life is thought to improve.

In addition, we developed a æow cytometry system to enable rapid pathological 
prediction in the operating room [9]. Clinical efåcacy was evaluated by comparing 
the malignancy calculated from the sample using the system with malignancy based 
on pathological diagnosis.

3  Clinical Information Analyzer System

Currently, the information generated in the operating room is stored independently 
on each device. However, this information is not routinely extracted. In other words, 
IT in the operating room is limited to the visualization and digitization of data 
obtained from each medical device.

Therefore, we aimed to perform AI-assisted surgery. A smart cyber operating theater 
(SCOT), as shown in Fig. 1, has been built as a platform for the integrated management 
and analysis of various types of information gathered during the perioperative period 
[10]. To achieve information-guided surgery, the system establishes a network with 
basic surgical equipment, such as MRI and various medical devices. The data from these 
medical devices can then be time-synchronized and stored.

Furthermore, by analyzing a huge amount of information, including not only 
SCOT data but also electronic medical records and surgical records, it is possible to 
examine the prognosis information of patients. This enhances its clinical signiå-
cance. Intraoperative statistical prediction of the effects of surgical procedures is 
useful for deciding whether to remove or preserve residual tumors. For instance, 
this can be used to predict how many months of survival will be extended by increas-
ing the intraoperative removal rate by 10% during surgery. As a challenge, medical 
information used for models such as AI is scattered in the hospital and in each sys-
tem and is recorded in a unique format.

At Tokyo Women’s Medical University, the Clinical Information Analyzer 
(CIA), as shown in Fig. 2, was developed as a basic system for handling data. This 
system consists of three functions: cleansing and accumulating medical data, ana-
lyzing data, and feeding back the analysis results to doctors. The target is electronic 
medical record system information such as basic patient information/physical char-
acteristics, blood test information, and prescription information. Furthermore, intra-
operative medical information is assumed to be medical device information, such as 
biological monitor information gathered via SCOT.
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Fig. 1 SCOT operation room

Fig. 2 Clinical Information Analyzer (CIA)
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In this project, the prognosis of patients who have undergone brain tumor resec-
tion will be proposed using AI. Two models, “survival prognosis” and “functional 
prognosis,” will be developed as prognosis prediction models.

“Survival prognosis” indicates the number of days a patient survives after sur-
gery and has been established as an index for clinical evaluation for all surgeries, 
not limited to brain tumor resection. Currently, doctors use empirical rules to predict 
survival and present these rules to patients at the time of informed consent. 
“Functional prognosis” refers to new functional complications that may occur after 
surgery. Paralysis and aphasia are two examples, which occur when the brain and 
nerves (cranial nerves, motor nerves, arcuate fasciculus, etc.) are damaged. At pres-
ent, functional sites are identiåed during awake surgery by brain function mapping.

AI (machine learning) using Python was used to develop the prognosis predic-
tion model. As explanatory variables, the parameters considered in the prediction of 
survival prognosis and functional prognosis in clinical diagnosis performed by a 
doctor were adopted. Speciåcally, the pathological results, age, presence or absence 
of radiation therapy, and excision rate were selected. The excision rate, maximum 
tumor diameter, and age were selected as explanatory variables for functional prog-
nosis. As a result, in the survival prognosis prediction model, an accuracy of 90% 
was obtained in two classiåcations, and 62% in four classiåcations. Additionally, in 
the functional prognosis prediction model, results with an accuracy of 94% were 
obtained for the two classiåcations.

Engineers should minimize the number of classiåcations because multiple objec-
tive variables generally reduce accuracy. However, from the standpoint of doctors 
and patients, it is thought that knowing the probability of every 1, 3, or 5 years rather 
than the probability of survival after 1 year will increase the patient’s motivation for 
treatment. Therefore, more accurate results can be obtained for the two classiåca-
tions, but their clinical importance diminishes. In the future, we would like to set the 
variables according to a bedside operation to improve the prediction accuracy of 
the model.

4  Future Study in CIA

Collecting prognostic information is an issue for the entire research åeld. In our 
study, follow-up information was collected to create survival and functional progno-
sis models. Since patients after discharge do not report their health condition to the 
hospital visited in the past, it is necessary to actively ask the hospital for follow-up 
information. This process requires a lot of time and the cooperation from doctors, 
and it is difåcult to investigate all patients, so we collected information for a lim-
ited period.

However, in addition to long-term follow-up information after discharge, there 
are issues in collecting short-term follow-up information during hospitalization. 
Functional deterioration that occurs during surgery (such as decreased MEP) is 
divided into disorders that recover immediately after surgery, those that recover 
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every few months, and those that are difåcult to recover. It is desirable to predict 
where these functional deteriorations should be classiåed before or during surgery. 
Past short-term follow-up information can be extracted from rehabilitation records 
using a model. To quantitatively and accurately evaluate the level of functional 
recovery, evaluation over time by a rehabilitation therapist is required. However, 
this information is recorded in electronic medical records in text format. Additionally, 
because the recording method differs depending on the therapist, manual structuring 
is required to create an AI dataset.

In our study, two projects were launched to collect follow-up information. First, 
to gather long-term follow-up information, a chatbot-style interview system using 
an SNS was developed. Patients registered on this SNS can collect progress infor-
mation by answering interviews that are delivered regularly. Next, to gather short- 
term follow-up information, we are trying to structure the data in collaboration with 
a rehabilitation therapist. We will expand the complete data by improving the efå-
ciency of data entry. In the future, we would like to use this follow-up information 
to improve the accuracy of prognostic prediction.
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Deployment of Smart Cyber Operating 
Theater-Based Digital Operating Room 
to a Mobile Operating Theater

Kitaro Yoshimitsu, Yuki Horise, Jun Okamoto, Ken Masamune, 
and Yoshihiro Muragaki

Abstract Information-guided surgery performed using digital technology pro-
vides better treatment results for patients and advanced skills for surgeons and 
clinical teams managing perioperative patients. Precise guided surgical digital 
transformation (DX) therapeutic goals connect all information and test data 
from admission to discharge to all devices via the Internet of Things (IoT). It is 
aggregated, used, and fed back as objectively visualized digital information. 
The smart cyber operating theater (SCOT) is a place for performing precision-
guided surgery using this ultimate digitization. SCOT becomes a digitized treat-
ment unit with all input-> analysis-> output schemes, and the entire operating 
room performs accurate guided treatment as a single medical device. Medical 
devices are networked to OPeLiNK, and aggregated data is used as valuable 
information necessary for intraoperative decision-making. Tokyo Women’s 
Medical University Hyper SCOT has introduced intraoperative MRI and 
MR-compatible equipment as an intraoperative diagnostic imaging device for 
malignant brain tumor resection, which is a package in a sense. SCOT for IoT is 
headed for new development. We conducted a demonstration experiment of a 
mobile treatment room that simulates remote-surgery support using technology 
(5G). The idea of   moving between the hospital and operating room will sooner 
or later permeate society. Therefore, we proposed a mechanism to spread 
advanced medical care to the surrounding area by operating SCOT in combina-
tion with SCOT and 5G and touring the surrounding area. Assuming a diagnosis 
using an ultrasound imaging device in a mobile SCOT, an onsite cardiologist 
received remote support from a gynecologist in front of a strategic desk. The 
image of the ultrasonic diagnostic imaging device, remote-control signal of the 
device, operation image at hand when operating the echo probe, and communi-
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cation call were transmitted and received by 5G communication in this demon-
stration experiment. Both physicians in charge of the demonstration experiment 
commented that they could communicate as if they were present and without 
information delay or discomfort in conversation, demonstrating low latency and 
wide bandwidth of 5G.

Keyword Smart cyber operating theater (SCOT) · Internet of Things (IoT) · 
Precise guided surgery · Mobile SCOT · 5G

1  Digital Operating Theater

As of 2022, digitization has been accelerating with technologies, such as video/
imaging, artiåcial intelligence (AI), energy devices, and robotics. Information- 
guided surgery performed using digital technology provides better treatment 
results for patients and advanced skills for surgeons and clinical teams manag-
ing perioperative patients. Digital technology combines images and anatomical 
information to capture visual information, drawing nerve fascicles behind tis-
sues, unknown to the surgeon, and creating milliorder mechanisms from the 
ångertips. Precise control enables surgery on inaccessible tissue, signiåcantly 
increasing the likelihood of surgery. Robotic surgery using these augmented 
reality (AR), surgical robot da Vinci and Hinotori is a representative example of 
digital technology in the operating room. Numerous surgeries cannot be per-
formed without these digital surgery support solutions. However, with a rigor-
ous understanding of the system, it is possible that only the inputs are digital 
(imaging) and only the outputs are digital (surgical robots) and are not fully or 
partially digitized. Most systems are analog mixtures.

Moreover, this mixed analog information hinders the maximum efåciency 
improvement that end users need. Precise guided surgical digital transformation 
(DX) therapeutic goals connect all information and test data from admission to dis-
charge to all devices via the Internet of Things (IoT). It is aggregated, used, and fed 
back as objectively visualized digital information.

Consequently, quality medical care for individuals, which was limited to 
skilled doctors and certain specialists, has become widespread and highly repro-
ducible and enables ultra-minimally invasive diagnosis and immediate treat-
ment. The smart cyber operating theater (SCOT) is a place for performing 
precision-guided surgery using this ultimate digitization. This section intro-
duces the high-performance smart treatment room (Hyper SCOT) as the DX of 
the operating room (Fig. 1) and the mobile SCOT, which is a portable SCOT 
under development for future remote treatment.

K. Yoshimitsu et al.
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Fig. 1 The high-end version of smart cyber operating theater (SCOT) of Tokyo Women’s Medical 
University

2  Smart Cyber Operating Theater (SCOT)

Digital data aggregated by organically linked devices in SCOT is used by AI to 
predict prognosis and support ultra-high levels of decision-making with intraopera-
tive feedback. Intraoperative feedback supports the judgment of the surgical team 
and is reused as an input signal for surgical support systems and robotics to achieve 
highly functional and optimal treatment. Consequently, SCOT becomes a digitized 
treatment unit with all input- > analysis- > output schemes, and the entire operating 
room performs accurate guided treatment as a single medical device.

Speciåcally, devices that acquire information, such as intraoperative monitoring 
devices and intraoperative diagnostic imaging devices and basic infrastructure 
devices, such as operating tables and surgical lights, are grouped (packaged) as their 
respective basic devices. Medical devices are networked to OPeLiNK and aggre-
gated on the OPeLiNK server (network) (Fig. 2). The aggregated data is used as 
valuable information necessary for intraoperative decision-making (information 
conversion). Although several approaches for leveraging aggregated data exist, in 
critical situations, AI offers multiple treatment options by comparing treatment 
results with similar cases that are visited several times during surgery. Surgeons are 
expected to consult AI and make decisions (AI conversion).

Surgical robots would be miniaturized in the future; however, reproducible inputs, 
such as intraoperative monitoring, imaging, and pathological diagnosis, would enable 
the removal and treatment of ultra-minimally invasive cells at the cellular level. This is 
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Fig. 2  The strategy desk. The information-integration application integrates the video and renders
the data retrieved from each device in time synchronization on the screen

the future image of a precision-guided munition for robot engineering. Speciåcally, in a
quantitative assessment of surgical safety, the average number of “errors” in a single
procedure is 15.55, of which 23.5% are equipment or technology malfunctions or fail-
ures. This is because 37% do not have the necessary equipment and 43% have the wrong
combination or setting. To solve this problem, the device must be pre-packaged from the
surgeon-case combination pattern as a risk measure.
  Tokyo  Women’s  Medical  University  Hyper  SCOT  has  introduced  intraoperative
MRI and MR-compatible equipment as an intraoperative diagnostic imaging device for
malignant  brain  tumor  resection,  which  is  a  package  in  a  sense.  Intraoperative  MRI
began operation at Shiga University of Medical Science and Tokyo Women’s Medical
University in 2000, and the coil and operating table are designed exclusively for surgery
as MRI dedicated to surgery, and not MRI for diagnosis. Fujiålm Holdings Corp. has
been commercializing and insuring since December 2021. Intraoperative MRI has been
introduced at more than 30 institutions  in Japan, and  intraoperative  images are often
used in combination with surgical navigation systems [1,  2].

3  IoT of Equipment in SCOT

Previously,  packaged  devices  were  not  linked  to  each  other;  it  worked  alone.
Circulating medical staff would monitor the display information of each device and
notify surgeons of any abnormality. Additionally, if the surgeon asks for informa-
tion, medial staff conårm the information by oral contact from the åeld of surgery.
Therefore, for surgeons who must make a comprehensive judgment of information,
the  information cannot be obtained unless it is fragmented and actively obtained.
Thus, they are always “hungry for information.”
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Conversely, SCOT deploys OPeLiNK (made by OPExPARK) to aggregate infor-
mation about each device on the server over the network and display it in a single 
application. OPeLiNK is middleware that aggregates device data to a server by con-
necting more than 40 medical devices, regardless of the type of device used in the 
operating room, manufacturer, and operating system. OPeLiNK has been used in 
studies and development at SCOT; however, it would be located in the operating 
room and intensive care unit (ICU) and ward in the next step [3].

The information-integration application integrates the video and renders the data 
retrieved from each device in time synchronization on the screen. For example, in 
SCOT, the center of the displayed image changes in real time by linking with the 
surgical navigation system centered on the image taken by intraoperative MRI, 
based on the surgical position of the surgeon. Nerve-monitoring information related 
to the actual surgical position and intraoperative pathological information are linked 
and displayed because spatial information can be added and displayed besides sur-
gical position information. Simultaneously, this integrated information is centrally 
displayed on the surgical strategy desk to an expert surgeon, who helps the surgeon 
to make decisions based on what is happening in the åeld.

Furthermore, OPeLiNK has been introduced in the standard SCOT of Shinshu 
University School of Medicine (Fig. 3) and is widely used in glioma and other neu-
rosurgical cases, such as pituitary adenoma. In future surgery, speciåcally mini-
mally invasive therapy, surgical techniques are expected to be robotized and replaced 
by new treatments, some of which are beginning to be realized in the SCOT demon-
stration room: robotics-operating table and microscope, fertilizer image viewer that 
can be viewed freely by hand action without touching [4], and hand-assist robot that 
prevents operator’s arm fatigue [5, 6].
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Fig. 3  The standard SCOT of Shinshu University School of Medicine. OPeLiNK has been intro-
duced in this operating theater
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4  SCOT × 5G = Mobile SCOT

SCOT for IoT is headed for new development. In October 2020, we made SCOT 
portable, changed the patient’s traditional social wisdom to “go to the hospital,” and 
realized the idea that “the hospital comes to the patient.” We conducted a demon-
stration experiment of a mobile treatment room that simulates remote-surgery sup-
port using technology (5G).

Several things around us are becoming smaller with the advancement of technol-
ogy, medical devices inclusive. Therefore, the idea of   carrying items will naturally 
change, and the idea of   moving between the hospital and operating room will sooner 
or later permeate society. Furthermore, when comparing regions and cities, the dif-
ferences in medical care are remarkable; however, there are several economic disad-
vantages, such as the challenges associated with introducing the latest diagnostic 
and treatment equipment to regional hospitals.

Therefore, we proposed a mechanism to spread advanced medical care to the sur-
rounding area by operating SCOT in combination with SCOT and 5G and touring the 
surrounding area. As a concept model, we developed a vehicle (Isuzu Giga vehicle size: 
length = 11.88 m, height = 3.7 m, width = 2.49 m, total load capacity = 18.33 t) equipped 
with a generator and a loading platform that can be expanded to the left and right. The 
vehicle is equipped with ultrasound diagnostics, a biological information monitor, an 
operating table, a mobile surgical light, four large wall- mounted displays, and 5G com-
munications equipment (Fig. 4). The concept car is not equipped with air-conditioning 
equipment, such as medical gas and negative pressure equipment.

 

K. Yoshimitsu et al.

Fig. 4  The concept model of mobile smart cyber operating theater (mobile SCOT). This mobile
SCOT has demonstrated experiment of remote ultrasonic diagnostic imaging via commercial 5G
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5  Demonstration Experiment of Remote Ultrasonic 
Diagnosis Using 5G in Mobile SCOT

Assuming a diagnosis using an ultrasound imaging device (Fujiålm Holdings Corp.) 
for pregnant women housed in a mobile SCOT, an onsite cardiologist received 
remote support from a gynecologist in front of a strategic desk. The simulation was 
performed using a fetal model. The frequencies of commercial 5G used are 3.7GHz 
and 4.5GHz bands as sub 6 and 28GHz band as millimeter wave. The obstetrician 
and gynecologist remotely guide the doctor in the vehicle on how to apply the con-
vex probe and, simultaneously, remotely control the device while observing the 
image transmitted from the ultrasonic diagnostic imaging device to support the 
treatment of the patient. Thus, the image of the ultrasonic diagnostic imaging device, 
remote-control signal of the device, operation image at hand when operating the 
echo probe, and communication call were transmitted and received by 5G commu-
nication in this demonstration experiment. The doctor in the car operated the echo 
probe based on the instructions on the remote control. The amount of data of the 
video information on the mobile SCOT side and the control information of the ultra-
sonic diagnostic imaging device was 20 Mbps and 0.2 Mbps, respectively. 
Conversely, the amount of data of the strategic desk remote controller on the strate-
gic desk side of the clinic and the remote controller of the ultrasonic diagnostic 
imaging device were 5 Mbps and 20 Mbps, respectively.

Both physicians in charge of the demonstration experiment commented that they 
could communicate as if they were present and without information delay or dis-
comfort in conversation, demonstrating low latency and wide bandwidth of 5G. In 
the future, the mobile SCOT would bridge the medical gap between urban and rural 
areas. Furthermore, we plan to conduct and develop a demonstration experiment 
assuming that specialists will support remote treatment at disaster/accident sites and 
dispatch vehicles for treatment.

Additionally, if the 5G area expands in the future, mobile strategy desk would be 
able to support decision-making using 5G smartphones and tablet devices even at 
academic conferences or external workplaces. It could be used as a mobile strategy 
desk that can accurately send the information collected in the operating room. 
Further stabilization of communications and expansions of 5G areas are considered 
essential to solving the technical problems associated with the social implementa-
tion of mobile SCOT.

6  Conclusion

SCOT is being developed as a single medical device that must be used for all inva-
sive procedures, procedures, and treatments, not only surgery. The SCOT network 
system extends beyond the operating room to perioperative patients, outpatients, 
ICUs, wards, and long-term care facilities and homes. It is a future in which 
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tailor- made treatments tailored to the characteristics and needs of individual patients 
will be possible.

Additionally, advanced surgical robots and fully automated treatment robots will 
perform ultra-minimally invasive treatments. In the future, surgery other than large- 
scale surgery may be performed in various places where mobile SCOT is deployed. 
In an age, where a wide range of medical services can be enjoyed through digital 
transformation, we believe that it is expedient for society as a whole to develop 
social infrastructure and comply with laws and regulations to aim for a better future.
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Surgical Processing Models

Ikuma Sato

Abstract The introduction of novel technologies in the medical åeld has enabled 
the treatment of previously untreatable conditions. However, the introduction of 
novel technologies in the surgical åeld has made surgical procedures more sophis-
ticated and specialized and, thus, more complex. Thus, the complexity of surgical 
procedures owing to their sophistication and specialization requires optimization 
and efåciency through visualization and the analysis of surgical procedures using 
surgical processing models (SPMs). This chapter introduces SPMs and surgical pro-
cess visualization based on their application to awake surgery in gliomas.

Keywords Surgical process · Machine learning · Modeling · Awake tumor 
resection · Neurosurgery

1  Introduction

The introduction of novel technologies in the medical åeld has facilitated the treat-
ment of previously untreatable conditions because of novel diagnostic devices, 
improved performance of diagnostic devices, and novel surgical devices. The infor-
mation obtained from these devices is used for treatment. In the surgical åeld, sur-
geons can make a detailed preoperative plan using information from the diagnostic 
instruments. Preoperative planning and the use of surgical instruments have enabled 
minimally invasive and safe treatment. Consequently, the quality of life in patients 
has improved, and errors have been prevented. Overall, this advancement represents 
a highly positive development.

Novel technologies in the surgical åeld include the development of surgical 
devices, such as endoscopes and laser therapy, and the emergence of novel concepts 
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in the operating room. Surgical instruments include endoscopes and navigation sys-
tems. Minimally invasive endoscopic surgery is performed using endoscopes to 
minimize the risk of wounds. Navigation systems are of two types as follows: (i) 
that use preoperative images and (ii) that use intraoperative images. Some systems 
use intraoperative images obtained by magnetic resonance imaging (MRI) or com-
puted tomography (CT) at each stage of surgical procedures, whereas others use 
real-time images obtained by diagnostic equipment. Furthermore, image-guided 
surgery using surgical instruments and navigation is available. Laser and photody-
namic therapies have also been used to treat cancers. A new operating room (OR), 
namely, the Smart Treatment Room, is now available. In a Smart OR, a medical 
device is connected to a network, and intraoperative data from these devices can be 
collected in a time-synchronized manner. Because intraoperative information can 
be obtained as digital data, artiåcial intelligence (AI) therapy using these data is 
desired.

In addition to surgical instruments, surgical robots are an emerging technology 
in this åeld. Researchers have reported on several types of surgical robots; however, 
endoscopic surgical robots are the most common. The master-slave types da Vinci 
and Hinotori are examples of endoscopic surgical robots. The slave robot has mul-
tiple arms and is equipped with a stereoscopic endoscope and forceps with multiple 
degrees of freedom. The master robot is a control panel. The master side is the 
operating table, where the surgeon observes the surgical åeld with a 3D viewer and 
inæuences the manipulators to perform the surgical procedure. The manipulator 
enables a more precise surgical procedure by using the “scaling function” and “anti- 
shake function.” Thus, the use of a robot dramatically increases the number of 
degrees of freedom in difåcult laparoscopic surgical procedures. In addition, it can 
increase the accuracy of the surgical procedure and reduce the burden on the sur-
geon. Furthermore, the robot has several advantages, such as enabling surgical pro-
cedures in cases that are difåcult to perform with conventional surgical procedures, 
for example, when the area around the affected part is excessively narrow. In addi-
tion, because the surgical robot can record endoscopic images and operation logs, 
AI medicine is expected to use this information.

With the introduction of novel technologies in the surgical åeld, surgical proce-
dures have become more sophisticated, specialized, and complex. Two key reasons 
contribute to this increase in surgical complexity. First, the operating room has 
become a complex environment owing to the introduction of advanced medical 
devices using technologies, such as medical engineering and ICT. Therefore, sur-
geons and surgical staff are required to possess knowledge of and skills in advanced 
treatment using these devices. Second, the growing sophistication and specializa-
tion of the åeld have increased the amount of required surgical knowledge, thus 
increasing the number of surgical procedures, methods, and techniques that sur-
geons must learn, memorize, and practice. In addition, owing to the increasing 
sophistication and complexity of surgical procedures, only the surgeon discerns the 
exact progress of the procedure.

Surgical procedures, which are becoming more complex owing to increasing 
sophistication and specialization, should be optimized and made more efåcient 
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through visualization and analysis using surgical processing models (SPMs). 
Several studies on SPMs have been reported in general reviews [1]. SPMs are used 
to construct a surgical model from intraoperative information, such as endoscopic 
and intraoperative video images of the surgical åeld. Using this model and the 
acquired intraoperative information, SPMs can visualize and optimize the surgical 
process by discriminating and analyzing it through machine learning, including 
deep learning. Furthermore, we reported on a surgical process identiåcation system 
for awake tumor resection in neurosurgery [2]. In the following sections, we intro-
duce our SPMs for awake tumor resection in neurosurgery and the surgical process 
identiåcation system using these SPMs.

2  Introduction of a Surgical Process Identiåcation System 
Using SPMs

Brain tumor resection surgery requires maximal tumor removal and minimal post-
operative complications. Maximum tumor removal is ideal for brain tumors, par-
ticularly gliomas, because of a correlation between the removal rate and postoperative 
survival time [3]. However, aggressive removal of tumors adjacent to the eloquent 
area may lead to postoperative complications. For example, if brain functions, such 
as speech and motor areas, are adjacent to the tumor, aphasia and motor functions 
may be impaired because of damage to normal tissues. Therefore, while consider-
ing patient prognosis, surgeons should identify the location and size of the tumor as 
well as the location of brain structures and functions, which vary among patients, to 
maximize tumor removal and minimize postoperative complications. To this end, 
we have constructed an intelligent operating room (IOR) with advanced medical 
equipment to maximize tumor removal; we performed awake brain tumor resection 
to understand brain functions intraoperatively [4]. Currently, IOR has been improved 
into a smart OR termed a smart cyber operating theater (SCOT).

Awake brain tumor resection in the IOR and SCOT is an advanced surgical pro-
cedure that allows visualization of the brain structure, residual tumor, and func-
tional localization of the brain in different patients during surgical procedures for 
maximal tumor removal and minimal postoperative complications. Intraoperative 
MRI after a brain shift in open MRI in these ORs enables accurate tumor localiza-
tion. During tumor removal, a real-time updating navigation system visualizes the 
surgical position on intraoperative MRI, allowing the surgeon to conårm the tumor 
location and normal brain area at any time [5]. Intraoperative MRI is repeated after 
tumor removal to conårm the presence of a residual tumor and maximize the 
removal.

In addition, awake surgery, in which the patient is kept conscious by switching to 
local anesthesia during a surgical procedure, facilitates conårming the localization 
of brain functions near the speech and motor cortices in real time. Because the local-
ization of brain functions, such as speech and motor functions, varies among 
patients, the primary surgeon identiåes the localization by applying a small amount 
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of electric current to the brain several times during tumor removal to determine the 
line for removal. Thus, awake brain tumor resection is performed with the identiå-
cation of brain function interspersed during tumor removal to maximize the removal 
and minimize postoperative complications. Therefore, the surgical procedure 
involves multiple transitions and repetitions, and the primary surgeon must be aware 
of these processes and their æow. In addition, a skilled physician should conårm 
these situations and those in which the surgeon is at a loss to make a decision. 
Simultaneously, it is difåcult for junior surgeons and surgical staff to grasp and 
predict surgical æow owing to multiple and repetitive surgical transitions.

Awake surgery involves numerous surgical transitions and repetitions; therefore, 
primary surgeons, junior surgeons, and surgical staff require assistance in under-
standing the æow of surgical procedures. To optimize complex surgical procedures, 
primary surgeons vary the order of the surgical processes and procedures on a case- 
by- case basis. However, the complexity of the surgical procedure poses a risk of 
skipping the necessary steps. In addition, postoperative review of the surgical pro-
cedure is cumbersome because it is necessary to reconårm its course using a long 
video image. Therefore, the primary surgeon should have a system that allows 
understanding of the progress of the surgical procedure and easy analysis of it later. 
Therefore, although the primary surgeon can able to assist by advice of a remote 
location expert surgeon, a system that automatically captures the surgical process is 
required because it requires signiåcant human labor.

In addition, it is difåcult for young doctors and surgical staff to understand and 
predict the surgical æow during awake surgery. Particularly, they encounter difå-
culties in understanding the surgical process from craniotomy to actual tumor 
removal because the order of the surgical procedures and techniques varies among 
patients. An experienced surgical staff, such as instrumentation nurses, assesses the 
monitor displaying the surgical åeld, prepares the necessary instruments, and pro-
vides them to the primary surgeon, who generally anticipates the intraoperative 
situation. Thus, veteran staff members understand the intraoperative situation 
through video images and perform smooth surgical procedures. However, it is dif-
åcult for young and inexperienced surgeons to understand the surgical æow and 
predict the next procedure by viewing images of the surgical åeld on a monitor. 
However, it is not feasible for young primary surgeons and surgical staff to com-
municate with each other or continuously watch videos to understand the intraop-
erative situation. Therefore, it is necessary to develop a system that automatically 
captures and presents the surgical æow in real time, without requiring the work of 
all surgical staff, including the primary surgeon. This necessitates a surgical pro-
cess identiåcation system that automatically captures the process during and after 
the surgical procedure and presents information that enables the prediction of the 
current and subsequent surgical process for optimal and efåcient surgical 
procedures.

Aizawa et al. developed a process analysis system using surgical navigation 
system logs for brain tumor resection to achieve efåcient surgical planning [6]. 
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This system automatically monitors the surgical progress and predicts the com-
pletion time based on the navigation system log and depth/shade information of 
the tumor segmented from intraoperative MR images. Aksamentov et al. reported 
on a machine learning method for predicting the end time of endoscopic surgery 
using endoscopic camera images. Lalys et al. reported on a process identiåca-
tion method for hypothalamic surgery to automatically identify surgical pro-
cesses and provide tailored support [7]. This method can automatically identify 
six surgical processes from surgical microscopic images using a support vector 
machine (SVM) and the Hidden Markov Model (HMM) (machine learning) [8]. 
In the case of awake brain tumor resection, the surgical process involves com-
plex transitions and repetitions of these processes; therefore, a novel method for 
highly accurate process identiåcation is required.

For accurate process identiåcation during awake surgery, surgeons should com-
bine information from multiple medical devices. Previously, the types of surgical 
instruments used were extracted from medical devices for process identiåcation. In 
awake surgery, the surgical process depends on the type of surgical instrument and 
the location of the procedure; therefore, it is necessary to extract this information. 
However, it is difåcult to obtain information from a single medical device or system 
using the current equipment and environment. Particularly, while using only infor-
mation from the logs of surgical navigation systems, it is difåcult to identify surgi-
cal procedures using instruments that do not have position measurement markers or 
missing logs because of shielding the markers of surgical instruments. Particularly, 
because the patient’s head is immobilized for cortical/white matter mapping and 
tumor removal, the surgeon is in the most comfortable position to perform the pro-
cedure; most information is lost from the surgical navigation system log because the 
surgeon shields the surgical instruments. Therefore, the information needed to iden-
tify the surgical process can be interpolated and determined by video estimation 
using surgical microscope images when a log is missing or upon using surgical 
instruments without a position measurement marker. Thus, the surgical process of 
awake brain tumor resection can be identiåed using information from multiple med-
ical devices.

We aimed to develop a system for identifying the process of awake surgery using 
information from medical devices in the OR. The patient’s brain structure, the loca-
tion of the tumor, and the location of the procedure can be extracted using MR 
images and information from the surgical navigation system logs. The types of sur-
gical instruments used in each procedure can be extracted from the surgical naviga-
tion system logs and surgical microscope images. Thus, using information from 
multiple medical devices, a large amount of information about the surgical proce-
dure can be obtained. In addition, it is possible to complement individual data by 
obtaining similar information from the surgical microscope images as well as from 
the logs missing because of the shielding problem while using surgical navigation 
system logs.
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3  SPMs for Awake Surgery Using Information from Multiple 
Medical Devices

Target Surgical Procedure and Information Used for Process Identiåcation.
In this method, awake surgery is the target procedure for surgical process identi-

åcation. Awake surgery is used to remove tumors in eloquent areas, such as the 
speech and motor cortices. It can be performed considering brain function; however, 
this advanced and complex surgical procedure requires techniques and judgment 
that depend on the knowledge and experience of the primary surgeon [9]. Therefore, 
awake surgery was selected as the target procedure because it is difåcult to under-
stand the surgical æow. In addition, the process depends on the tumor grade. 
Therefore, we selected patients with World Health Organization grade II and III 
tumors who underwent awake surgery [10].

To identify the surgical procedure, we obtained information from several 
medical devices in the OR. Using information about the patient’s brain structure 
and on surgical instruments used by the primary surgeon during the surgical 
procedure (types of instruments and positions of surgical procedures) facilitates 
identifying the surgical process [8, 11]. Therefore, we identiåed the process 
using information about the patient’s brain structure, the types of surgical instru-
ments used by the surgeon, and their position. Thus, we used intraoperative MR 
images, surgical navigation system logs, and surgical microscope images from 
medical equipment in the OR. The reasons for this selection and the obtained 
information are described below.

3.1  Intraoperative MR Images

Intraoperative MRI is useful for obtaining information about the patient’s brain 
structure during surgical procedures. Intraoperative MR images are the patient’s 
brain image data after the brain shift and can therefore provide information on the 
intraoperative tumor location and brain structure (brain surface and normal brain 
regions). These two types of images differ in their representation of normal brain 
tissues and tumors. This method uses T1-weighted MR images, which enables 
determining the brain structure.

3.2  Surgical Navigation System Log

The surgical navigation system log is useful for obtaining information about the 
surgical procedure. It provides information on the types of surgical instruments 
used by the surgeon (bipolar, electrical stimulation probe) and 3D position informa-
tion (surgical instrument tip position). Furthermore, the combination of this log 
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with intraoperative MR images allows for accurate and real-time acquisition of the 
surgical site, which serves as a process identiåcation element during surgical proce-
dures. Therefore, the type of surgical instrument used by the primary surgeon and 
the location of the procedure can be determined from the surgical navigation 
system log.

3.3  Surgical Microscope Images

Surgical microscope images are useful for determining the type of surgical instru-
ment used by the primary surgeon. Images from the surgical microscope are equiva-
lent to the surgical åeld of the primary surgeon and demonstrate surgical instruments 
that cannot be identiåed from the surgical navigation system log. Therefore, it is 
possible to obtain the types of surgical instruments used in operating microscope 
images. In this method, we use surgical microscope images to detect three surgical 
instruments primarily handled by the lead surgeon: bipolar forceps, an electrostimu-
lation probe, and scissors. Furthermore, the bipolar and the electrostimulation probe 
are acquired surgical instrument information by surgical microscope images when 
the type of instruments cannot be obtained from the surgical navigation system log 
owing to the shielding problem.

3.4  Construction of SPMs for Awake Surgery

We constructed a surgical process model that enabled junior doctors and surgical 
staff to understand the current process and predict the subsequent process during 
surgical procedures, other skilled doctors to assess the surgical status during surgi-
cal procedures, and the primary surgeon to efåciently review the procedures later. 
Each surgeon optimizes different surgical processes; therefore, the order of the pro-
cesses often changes depending on the patient’s condition and other factors, which 
complicate the transition points of the process. Therefore, it is necessary to visualize 
the complicated surgical process logically and present it to young doctors, surgical 
staff, and primary surgeons during and after surgical procedures. This model was 
designed to identify the surgical process every second.

The scope of the surgical process model encompasses the process followed by 
the primary surgeon, beginning from the preoperative procedure after MRI, which 
is a complicated procedure in awake surgery, to the time before repeating MRI after 
tumor removal. Therefore, the constructed model is a part of the process performed 
by a skilled surgeon and excludes craniotomy. We excluded craniotomy because it 
was considered less necessary to support the understanding of the process. This is 
because it is a typical surgical procedure and the process transitions have few 
branches.
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Surgical process modeling can be divided into the top-down approach and the 
bottom-up approach. The top-down approach models the surgical process based 
on knowledge and experience, whereas the bottom-up approach models the sur-
gical process based on recorded data. This recorded data identiåcation method 
identiåes surgical processes based on information from multiple medical 
devices. Therefore, we adopted a bottom-up approach using actual surgical 
record data. In conventional research methods using the bottom-up approach, 
surgical process models are constructed on the basis of interviews with sur-
geons, information about the types of surgical instruments used from video 
recordings during surgical procedures, and data from manual records of instru-
ment exchanges [12–14]. Here, we constructed a surgical process model using 
intraoperative MR images, surgical navigation system logs, and surgical micro-
scope images that could be obtained intraoperatively.

We deåned the process as an element of the model and eventually constructed 
the model. The surgical process is deåned together with the clinician using clin-
ical data (preoperative and intraoperative MRI images, surgical navigation sys-
tem logs, and surgical microscope images) that have been acquired in the past 
for grades II and III. First, the surgical process was deåned by the following 
elements: “which” surgical instruments were used by the surgeon, “what” part 
of the surgical process occurred, and “when” did the process occur. Next, we 
obtained speciåc information on the surgical procedure elements. Using clinical 
data, we manually recorded the type of surgical tool used during the procedure 
(bipolar, electrostimulation probe, scissors) and its position (on the brain sur-
face, inside the tumor, in normal tissue, or the surgical åeld) every second along 
the time axis. The recording involved loading intraoperative MR images and 
surgical navigation system logs into a 3D Slicer, which determined the surgical 
position from the position of the surgical instrument tip on the intraoperative 
MR image. Simultaneously, the type of surgical instrument (bipolar, electro-
stimulation probe, or scissors) was visually conårmed and recorded from the 
surgical microscope images. Finally, based on the recorded information, the 
surgeon and clinician deåned the surgical process from the time of the MRI to 
the end of tumor removal. Table 1 summarizes the surgical process deåned by 
the primary surgeon and clinician.

The surgical process model was based on a deåned surgical process, and a 
hierarchical state transition model was constructed by considering the goal of 
the process transition from a clinical perspective. In conventional research, the 
transition of a surgical process is often a left-to-right type of model that moves 
in a constant direction without looping, which is unsuitable for cases where the 
surgical process has multiple transition destinations, such as awake surgery. 
Therefore, we modeled the surgical process in a hierarchical structure to abstract 
multiple processes as a single process and simplify its transition. The årst level 
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Table 1 Deånition of surgical processes for awake surgery

1st Layer 2nd Layer 3rd Layer

P1: Pre-tumor 
removal process

P1
1 : Preparation P11

1 : Device setting

P12
1 :  Veriåcation of the tip position of the 

surgical instruments

P2
1 :  Cortical mapping and 

pathology diagnosis
P21

1 :  Examined on the cortex by electric 
stimulation probe

P22
1 :  Dealing with convulsive wave and marking 

of brain functional position during cortical 
mapping

P23
1 : Coagulation of cortex

P24
1 :  Meninges incision and sampling lesion of 

glioma
P2: Tumor 
removal process

P1
2 : Tumor approach P11

2 : Venous and sulcus detachment

P12
2 : Incision of cortex and clipping of arterial

P13
2 :  White matter incision, suction tumor and 

removal tumor

P2
2 :  White mapping and 

pathology diagnosis
P21

2 : White mapping to the cavity of resection

P22
2 :  Dealing with convulsive wave and marking 

of brain functional position during white 
mapping

P23
2 : Sampling lesion to the cavity of resection

PId: Idling

of the surgical process model was divided into two classes, namely, procedures 
performed before tumor resection or tumor resection. The second level con-
sisted of four classes of intraoperative procedures (preoperative preparation, 
intraoperative rapid diagnosis, tumor removal, and brain function tests during 
removal). These four classes were constructed at one level of the årst hierarchy. 
At the third level, 12 processes were constructed under one of the four classes. 
Speciåcally, “arachnoid incision and pathological section collection,” one of the 
surgical processes, is a part of “intraoperative rapid diagnosis” performed 
“before tumor removal.” Finally, the possible transitions between each class and 
each of the 12 processes were associated based on manually recorded informa-
tion to determine the destination of the transition. Thus, we constructed a surgi-
cal process model consisting of 12 processes in three layers (Fig. 1).
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Fig. 1 Construction of SPMs for awake surgery

4  Surgical Process Identiåcation System for Awake Surgery

The surgical process identiåcation system consists of a personal computer, which 
receives information from multiple medical devices and automatically identiåes the 
surgical process during and after surgical procedures, and a monitor, which displays 
the identiåcation results to the primary surgeon, residents, and surgical staff (Fig. 2). 
The system was connected to each medical device, and each piece of information 
was sent via the internal network of the OR. The system performed multithreaded 
processing to calculate the process identiåcation results. The user interface (UI) 
design allowed the user to assess the surgical process identiåcation results during 
and after surgical procedures (Fig. 3). Intraoperatively, the system displayed the 
identiåcation results based on the input information obtained from the surgical navi-
gation system and surgical microscope images. In the postoperative stage, an intui-
tive UI was designed by displaying the surgical æow as a graph based on information 
similar to that in the intraoperative stage. In addition, the surgical process can be 
identiåed by switching the UI during surgical procedures, and the process and vid-
eos can be viewed in a way similar to the postoperative function.
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Fig. 2 Overview of the surgical process identiåcation system

Fig. 3 User interface of the surgical process identiåcation system

Surgical Processing Models

https://pezeshkibook.com



36

Fig. 4 Surgical process identiåcation using surgical processing models

The surgical process was identiåed using information processing techniques, 
including machine learning, based on multiple pieces of medical information. We 
used three types of information, namely, intraoperative MRI, surgical navigation 
systems, and microscope images. Elements of the surgical process were extracted 
and identiåed from these sources. Two elements of the surgical process were 
obtained through image processing and deep learning as follows: the location of the 
intraoperative procedure performed by the primary surgeon and the type of surgical 
instruments to be used. Surgical process identiåcation was performed using machine 
learning based on the surgical process model.

Here, we describe the data acquisition before launching the system. The system 
used intraoperative MRI, surgical navigation system logs, and surgical microscope 
images. Immediately before the beginning of tumor resection, the system was con-
nected to the surgical navigation system and the surgical microscope to enable the 
acquisition of intraoperative MR images, log data from each medical device, and 
video information. Intraoperative MR images were imported into the system using 
a surgical navigation system.

Here, we describe the identiåcation process æow and time synchronization of the 
system (Fig. 4). The process consists of three steps: step 1, determining the type of 
surgical instruments and the location of intraoperative procedures using intraopera-
tive MRI and surgical navigation system logs; step 2, determining the type of surgi-
cal instruments using surgical microscope images; step 3, identifying the surgical 
process using the obtained information. During tumor removal, the data were 
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Fig. 5 Extracted information: position and types of surgical instruments using intraoperative mag-
netic resonance imaging and the navigation system’s log

stacked in the system upon obtaining information from the surgical navigation sys-
tem log and operating microscope. The identiåcation process was performed every 
second, and steps 1 and 2 were processed in a multi-threaded method using the 
initially stacked data. If a log was missing, the data were stacked 1 s before the miss-
ing log was used. Step 3 was not processed until both steps 1 and 2 were completed, 
and the results were displayed on the monitor after processing.

Step 1: Determining the type of surgical instruments and the location of intraopera-
tive procedures using intraoperative MRI and surgical navigation system logs.

In step 1, the types of surgical instruments used by the primary surgeon and 
the location of this procedure were captured by image processing. The types of 
surgical instruments consisted of bipolar and electrical stimulation probes. The 
four deånitions of the treatment points were “brain surface,” “inside the tumor,” 
“near normal brain tissue,” and “open surgical åeld.” Prior to acquisition, the 
brain regions were segmented from the intraoperative MR images and labeled to 
clarify the regions. Using the labeled data and logs from the surgical navigation 
system, we determined the types of surgical instruments and the location of the 
procedure at each time point based on 3D image processing (Fig. 5). First, we 
determined the log of the coordinates of the surgical instrument tip from the 
surgical navigation system. Subsequently, we identiåed the location of the sur-
gical tool by searching for the label value of the tool tip coordinates on the 
segmented image of the brain region during surgical procedures. If the log of the 
tool pointed outside the brain region, it was assumed to be in the surgical åeld; 
if the log was absent, it was recorded as a missing log.
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Step 2: Determining the type of surgical instruments using surgical micro-
scope images.

In step 2, we determined the types of surgical instruments used by the primary 
surgeon through deep learning. This step served as an interpolation in case of miss-
ing log information of the surgical navigation system or upon using a surgical 
instrument not listed in the log information. Therefore, we acquired three surgical 
instruments (bipolar, electrostimulation probe, and scissors) primarily used by the 
surgeon’s dominant hand. To identify the types of surgical instruments to be used 
from the video information, we used You Only Look Ones (YOLO), a supervised 
deep learning method that is highly accurate and fast in object detection [15]. Upon 
obtaining an image, YOLO determined the region and object name if the previously 
learned object is reæected in the image. Therefore, the system used a pre-created 
training dataset to generate a YOLO neural network capable of detecting the three 
surgical instruments. During surgical procedures, the system captured images from 
the surgical microscope at each frame and used YOLO to detect the types of surgical 
instruments (Fig. 6). If the YOLO neural network determined that no surgical instru-
ments were visible in the image, we assumed that there were no surgical instruments 
in the image.

Step 3: Identifying the surgical process using the obtained information.

Surgical process identiåcation was based on a surgical process model using 
machine learning. It estimated the current process from time series data, and 
machine learning methods, such as SVM, Bayesian inference, long short-term 
memory (LSTM), and HMM, were used for this purpose. In this method, HMM, 
which could compute the results rapidly, was used to consider both process identi-
åcation based on time series transition and real-time performance. Nakamura et al. 
reported on a Bayesian method for identifying the extraction process using informa-
tion from a surgical navigation system log for brain tumor resection [6]. The 
Bayesian method is characterized by features independent at each time and unaf-
fected by the past time series. However, in awake surgery, the feature values of each 
period are events determined by the past surgical process. Therefore, identiåcation 
without using time series-related features, such as an SVM or Bayesian estimation, 
is not optimal. In addition, Panzner et al. reported that LSTM can compute highly 
accurate results owing to training data and cost, whereas HMM is useful for fast 
results [16]. Therefore, we improved the machine learning method reported in a 
previous study and used an HMM capable of Markovianity estimation.

In this method, we used the Hierarchical Hidden Markov Model (HHMM), 
which is an HMM method adapted to hierarchical models that possess Markovian 
properties and consider real-time performance. First, the information obtained in 
steps 1 and 2 was integrated into a single feature, and the values were stored as time 
series feature data for each second. Subsequently, we identiåed the surgical process 
with the HHMM using time series feature data as input information. The identiåca-
tion process was performed sequentially, beginning from the årst level deåned in 
the surgical process model and ending at the third level. We used the Viterbi 
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Fig. 6 Extracted information: types of surgical instruments using microscope video

algorithm to reduce the computational complexity and calculated the surgical pro-
cess with the highest probability as the result.

4.1  Results of Surgical Process Identiåcation

In the hierarchical surgical process model constructed using this method and the 
developed system, the identiåcation results using clinical data from three cases 
were 96.3 ± 0.47%, 95.4 ± 0.73%, and 92.2 ± 1.62% for the årst, second, and third 

Surgical Processing Models

https://pezeshkibook.com



40

Fig. 7 Results of surgical process identiåcation

levels, respectively. Figure 7 depicts the results for one case. This method possibly 
facilitates an understanding of the surgical process by using existing medical equip-
ment. However, errors in identifying the surgical instruments from the surgical 
microscope images contributed to the low identiåcation accuracy. Therefore, it is 
necessary to reconsider image processing and learning methods in the machine 
learning process.
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5  Conclusion

In this chapter, we describe the background of SPMs and introduced our surgical 
process identiåcation method using SPMs and a machine learning-based surgical 
process identiåcation system with multiple pieces of information. The method 
achieved >90% accuracy in surgical process identiåcation using a 12-procedure 
surgical process model based on three cases. Our results demonstrated the possibil-
ity of facilitating an understanding of the surgical process using the existing medical 
equipment. In addition, surgeons could easily recognize the surgical process by 
logically visualizing the surgical æow after surgical procedures. However, the accu-
racy of the machine learning system decreased owing to errors in the detection of 
surgical instruments, and it is necessary to reexamine the image processing and 
learning methods in the machine learning process. In the future, we intend to 
improve the accuracy of surgical process identiåcation by reåning accuracy of sur-
gical process identiåcation and developing a surgical process analysis system to 
evaluate the process and technique for actual clinical use. Furthermore, we aim to 
visualize the knowledge of expert surgeons by improving this method to identify 
detailed surgical processes and analyze numerous surgical cases.
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Semantic Data Modeling

Hideo Suzuki

Abstract To perform surgery, suf�cient knowledge and experience based on clini-
cal information are required. Also, AI-aided surgery that is expected to become 
widely practiced in the near future requires vast amounts of high-quality training 
data to continually improve accuracy. A database that stores clinical data using a 
real-world model is needed to meet these requirements. This chapter explains the 
semantic data model (SDM), an extension of semantic data modeling, which is a 
method for translating real-world data into a relational database. The SDM extracts 
clinical data from different database models in hospital information systems, trans-
forms them into the SDM’s logical schema, and loads them into the SDM database. 
The features of the SDM, especially its logical schema, are described. The SDM 
will be a component of the information infrastructure for AI-aided surgery.

Keywords Semantic data modeling · Relational database · Clinical information · 
Hospital information systems · Entity-relationship diagram · SDM · EMR

1  Introduction

Databases are among the most important information infrastructure components in 
all application systems. Hospital information systems (HISs) are application sys-
tems, and clinical information generated by medical practice is encoded into clini-
cal data and stored in databases. By decoding this data with the same application, it 
can be reproduced as clinical information. Each hospital information system con-
sists of many applications such as electronic medical records (EMRs), order entry, 
and department systems. Each application uses a local area network (LAN) to 
exchange clinical information by messaging. One of the standards for this commu-
nication is Health Level Seven (HL7) [1]. In addition to HL7, Fast Healthcare 
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Interoperability Resource (FHIR) uses the application program interface (API) 
method to get clinical data from EMR applications. In radiology, applications such 
as Picture Archiving and Communication Systems (PACS) and the Digital Imaging 
And Communications In Medicine (DICOM) standards are well-known [2]. Medical 
Waveform Format Encoding Rules (MFER) is a standard format. For waveforms of 
electrocardiogram (ECG), electroencephalograph (EEG), etc. However these stan-
dards are not provided for data archiving but message exchanges. Therefore, HIS 
application providers must de�ne different database systems and different 
data models.

For example, in the case of surgery, many procedures are performed under time 
pressure; therefore, a surgery team needs copious clinical information quickly to 
make a judgment. Generally, the approach is to collect and prepare the necessary 
clinical information before surgery. However, if the unexpected occurs during sur-
gery, sometimes the optimal treatment cannot be performed because the prepared 
clinical information is inadequate. Therefore, it is critical to prepare a database pre-
viously that can decode, search, and visualize all clinical data in real time. To solve 
this problem, the clinical data stored in separate databases by each application are 
combined into one database as a uni�ed data model and should be saved for use in 
all searches. That makes medical professionals to search for the necessary informa-
tion and rapidly perform visualizations to facilitate diagnoses.

Currently, many HISs use relational databases (RDBs) for which there are many 
products of database management systems (DBMSs). It is, therefore, possible to 
integrate the clinical data stored for each application into the same RDB. In particu-
lar, PostgreSQL, which is an open-source RDB, is suitable as a migration destina-
tion because there are many examples of migration from other RDBs. However, in 
a relational database model, anyone can design a logical scheme in an original man-
ner by using table name, entity name, and entity-relationship, of design elements. 
For example, even if the entity has the same meaning, the entity-name can be de�ned 
by different notations, such as PATIENT_ID, PT_ID, and ITEM1. Even in the same 
HIS, entity-name can be de�ned by different notations in different tables, for exam-
ple, PATIENT_ID is de�ned in one table and PT_ID is used in another table. That 
is, different names may have the same meaning, or the same name may have differ-
ent meanings. No conversion from clinical data to clinical information can be done 
without the de�nition document such as “both PATIENT_ID and PT_ID are de�ned 
as the unique patient identi�cation.” This de�nition of a logical scheme is called a 
data model, and it differs for each HIS, even if it is integrated into one RDB. The 
required information cannot be found without each de�nition of the logical scheme. 
The data lake function can store many different logical schemes in one archive; the 
data warehouse (DWH) function can convert all data to the same logical scheme for 
one archive.

Semantic data modeling is one of the modeling for RDBs that uni�es different 
logical schemes. Using the method, real-world data is converted to a logical scheme 
via a conceptual scheme. Integrating the data of different applications into one logi-
cal scheme easily converts data to information that all users can search for and 
visualize quickly. The SDM further extends this semantic data modeling can build 

H. Suzuki

https://pezeshkibook.com



45

Fig. 1 Compatibility model using an SDM that shares a common data model

DWH, which was developed as a common data model by MoDeL, Inc., in 2014 and 
is managed by the SDM Consortium (General Incorporated Association, Japan).

Currently, hospitals at medical universities that use the SDM have migrated clin-
ical data that has been stored for more than 10 years to the SDM. Using business 
intelligence (BI) software connected to the SDM through the open database con-
nectivity (ODBC) protocol, big data analysis is being done. Migrating clinical data 
to a uni�ed data model reduces the cost of developing unique extraction transforma-
tion load (ETL) software for different data models and reduces the migration cost 
when the HIS provider changes. Other advantages of a uni�ed data model include 
wide-area data collection, shared analytical methods, and improved AI accuracy 
using the same data format between training and input data (Fig. 1) [3].

2  The SDM Overview

2.1  Entity-Relationship Model and Semantic Data Model

In relational databases parlance, entity-relationship modeling means establishing a 
relationship between two tables by entities. Using the common entity of each table 
as the mutual external key, two tables can be joined. The relationship also has car-
dinality between the two tables. In the case of table-A and table-B containing the 
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same entity, cardinality represents the relationship of table-B seen from table-A and 
the relationship of table-A seen from table-B. For example, for a common entity, 
Table-A:Table-B is expressed as 1:N when there are multiple records in table-B for 
the record of table-A.  The cardinality has variations such as 1:1, 1:N, N:1, and 
N:N. This relationship is used to join table-A and table-B with a cardinality. By 
joining these tables, it is possible to treat any entity of table-A and any entity of 
table-B as if they are the entities of the same table. For example, a clinical database 
has two tables, which are PATIENT and LABORATORY. The PATIENT table has 
PATIENT_ID and BIRTHDATE as entities, and the LABORATORY table has 
PATIENT_ID and VALUE as entities. In this case, “PATIENT_ID” is a common 
entity, and it becomes the mutual external key. In the PATIENT table, PATIENT_ID 
is the primary key; therefore, each patient has only one record in the table. For the 
LABORATORY table, each patient may have no or plural data entered as VALUE, 
so the cardinality of PATIENT:LABORATORY is 1(mandatory):N(optional). In 
this cardinality, optional indicates including a case of no record in the table, and 
mandatory indicates at least one record in the table. For example, the cardinality of 
PATIENT:VISIT_HISTORY shows 1(mandatory):N(mandatory). This is because 
the PATIENT table has no records for patients who have never visited the hospital.

Semantic data modeling applies the common sense of the industry such as termi-
nology, work-�ow, literacy, etc. to design a logical schema. In the clinical world, if 
a logical schema is designed using medical terminology, clinical process �ow, and 
clinical literacy, then clinical professionals can convert clinical data to clinical 
information without needing a database de�nition document. The SDM employs 
the semantic data model to design the tables’ and entities’ names. The SDM is a 
common data model developed by referring to the semantic data modeling method-
ology. Its features are described below.

2.2  Common Entities in the SDM

In each table, SDM de�nes universal elements as common entities that can be 
understood by non-clinical professionals. These are elements that represent actions 
and are entities related to the When, Who, Where, What, and How order of presenta-
tion. In the general EMR, entity names in a table are de�ned as required, e.g., 
ORDER_DATE, DOCTOR_ID, and DEPARTMENT_CODE. In other tables, dif-
ferent entity names are set, e.g., RECORD_DATE, NURSE_ID, WARD_CODE, 
etc. In this case, these two tables, �nding no common entity name, cannot be joined. 
In the SDM, common entities are de�ned in each table, such as KEY_DATE, 
AUTHOR, PERSONAL_ID, DEPARTMENT/SECTION, ACTION_TYPE, etc. 
Since a universal and common entity name that does not depend on the type of busi-
ness or occupation is de�ned in each table, table joining is possible by using a com-
mon entity. Also, regarding AUTHOR, since AUTHOR_TYPE and 
AUTHOR_OCCUPATION are de�ned to specify a role, the AUTHOR entity can 
use “doctor” or any other professional title. It is designed for the same entity name 
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Fig. 2 The ER (entity-relationship) diagram for the SDM, with universal entities

to accommodate the differences in roles and occupations, and by using these com-
mon entities, table joins can be effected for all table combinations (Fig. 2) [4].

2.3  Primary Key

Since the primary key of the SDM table is RECORD_ID, which is based on the 
primary keys of the extraction source main table, a user can search for and con�rm 
the record in the extraction source table. When the data of the extraction source is 
updated or deleted, it can be compared with the data of the extraction source, and 
then the SDM data can be updated. By this method, consistency is maintained with 
the data in the extraction source to establish whether the data of the extraction 
source has been subject to tampering.

2.4  Data Types

The SDM de�nes several rules for data types in the logical schema used for the 
relational database. For the numeric types, INT and REAL are recommended for 
integral number and real number, respectively. The units of each item should be 
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consistent. For example, the unit of body weight uses Kg even for a newborn. The 
character types that follow allow for high-speed searching.

• Keys such as ID use CHAR (n) type: Fixed length with blank padding.
• Fixed phrases such as options use VARCHAR (n) type: Variable length with limit.
• Free text such as comments uses TEXT type: Variable unlimited length.

The default value is an empty string ““without using NULL. If NULL is used, 
the database index will be invalid because there are SQL restrictions since the slow 
processing speed “IS NULL” or “IS NOT NULL” syntax must be used to determine 
whether it is a NULL or an empty string. The default of an unassigned entity is N/A 
(not applicable) to distinguish it from a missing value.

When recording the date and time, if date and time are set to different entities, 
when calculating the difference between two times, one must always convert to the 
TIMESTAMP type before calculating. Therefore, regardless of whether the time is 
recorded or not, it is recorded as a TIMESTAMP type. The date type allows a NULL 
value, but it will be slow search if there is no data or NULL, so the default is 
“9999/12/31 23:59:59” for a speci�c date and time.

2.5  Normalization

In the relational database model, normalizing the tables eliminates data duplica-
tion. In the EMR, the disease name is often selected on each medical interven-
tion. In that case, the disease name code instead of the disease name is only 
recorded in the disease history table with a developed date instead of in each 
EMR table. And the disease master table is created separately and includes the 
disease name and the attribute information associated with the disease name 
code. If the disease name or the attribute information are searched on each EMR 
table, the disease history table will simultaneously be joined to each table and 
the disease master table. This normalization contributes to saving the amount of 
data, but multiple tables must always be joined, and then it causes the searching 
response to slow down. Because SDM uses a denormalization method that 
includes the code and its conversion results simultaneously, table joins are mini-
mally required, and it achieves high-speed search. The advantage of the method 
is that it is not affected by master-generation management issues. For example, 
if a temporary code is assigned to a new disease, the code in the disease master 
table will be changed when a formal code is assigned. If a record in the disease 
history table that includes the temporary code would be searched, the disease 
name would not be found. Also, if the name is changed with the same code, the 
new name is extracted when searching the medical records. The SDM records 
both the code and the name simultaneously; thus searching by name can �nd 
both past and present records. In addition, the past master table can be 
reproduced.
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Fig. 3 The calendar-based table of the SDM is useful for comparing entities in transaction tables

2.6  Time-Series Data

Almost all HIS databases have separate tables for each of the medical activities. 
These are recorded in every table along with the date when the clinical actions 
occurred. Each entity is displayed as time-series data in the same table. However, 
different tables cannot be joined because the data of the same day may not exist. In 
the SDM, the calendar table is de�ned, includes the relative number of days from 
the date of hospitalization, surgery, etc. and the bed address, as entities, and each 
data is recorded everyday. By joining each table to the calendar table, entities in 
different tables can be displayed on a single chart. It is then possible to know the 
effect of the medication by comparing the date of the medication with the test results 
thereafter (Fig. 3).

2.7  Latest Record

Searching a relational database for the latest record among a signi�cant number 
of records slows the response time. In the SDM tables, EXPIRE_TIMESTAMP 
of the common entities allows you to search for the latest record with a spe-
ci�c date 9999/12/31 and time 23:59:59. When a newer record is registered, 
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EXPIRE_TIMESTAMP of the current record is changed to the registration date and 
time of the new record, and EXPIRE_TIMESTAMP of the new record is set to the 
speci�c date 9999/12/31 and time 23:59:59. By repeating this process, the history 
of the latest record can be retained. Also, the latest record and the previous record 
can be searched quickly.

2.8  Duration and Time

In the case of clinical data, the TIMESTAMP type (yyyy/mm/dd hh:mm:ss) 
is often used to record the time that can be searched. However, every action has 
its start time, end time, and duration. In consultation cases, the SDM de�ned 
the reserved date and time as RESERVED_DATE, the reception date and time 
as RECEPTED_TIME, the start date and time as OPERATON_BEGIN, and the 
end date and time as OPERATION_END. The SDM also de�nes the waiting time 
against the reserved time as LATENCY_AFTER_RESERVATION is calculated by 
“OPERATION_BEGIN—RESERVED_DATE,” the waiting time against reception 
as LATENCY_AFTER_RECEPTION is calculated by “OPERATION_BEGIN—
RECEPTED_TIME,” and consultation time as OPERATION_TIME is calculated 
by “OPERATION_END—OPERATION_BEGIN.” That is, the action has a dura-
tion other than time. The TIME type can only be stored until 23:59:59, so the data 
type must be integral number or real number in the case of over 24 hours. Since 
the SDM includes BEGIN_TIMESTAMP, END_TIMESTAMP, and DURATION 
in common entities, extracting each table using the AUTHOR �lter helps optimize 
the operational �ow, working volume, traf�c line, etc. It can also be used for skill 
management. If a patient is the search �lter, it can also be used for reducing the 
waiting delay and queueing time. In surgical cases, accurately predicting surgery 
times would increase the availability of the operating theatre.

2.9  Hierarchy

Each SDM table has a three-layer key. RECORD_ID represents a unique key in 
the table, and GROUP_ID contains multiple RECORD_IDs, and 
TRANSACTION_ID de�nes the included multiple GROUP_ID.  These three-
layer keys are useful for �ltering. For example, in the medication table, there are 
three levels: drug, recipe, and order. Order contains multiple recipes and recipe 
contains multiple drugs. If you want to search by order unit, you can use 
TRANSACTION_ID. If you want to process by recipe unit, search by GROUP_
ID, and if you want to extract by drug unit, you can just use RECORD_ID as it 
is. In the case of radiology, according to the DICOM standard, ACQUISITION, 
SERIES, and STUDY form three layers; they can be easily aggregated. In other 
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common entities, there are also three layers, RECORDER, AUTHOR, and 
AUTHORIZER. For example, a resident doctor as the AUTHOR asks a medical 
clerk as the RECORDER to input the medical record, and an medical instructor 
as the AUTHORIZER signs the medical record for the resident doctor as the 
AUTHOR. In this case, three layers are required.

2.10  Key Date and Query Date

In the SDM, the most important date and time in each table are de�ned as KEY_
DATE. For example, in the case of laboratory tests, the most important date is the 
sampling date. This is because the patient’s condition at the time of the test is 
re�ected in the result. In this case, KEY_DATE is the same as SAMPLING_DATE 
of the table’s unique entities. Thereby, the common entity, selected from among the 
table’s unique entities, is recorded in duplicate. Conversely, QUERY_DATE in the 
common entities does not necessarily have to be the same as KEY_DATE.  For 
example, in the reservation table, the reservation date is KEY_DATE, but there are 
cases where the reservation is canceled or executed without a reservation. Therefore, 
the performing date should be recorded as the QUERY_DATE of the reservation 
table. Since KEY_DATE contains both date and time and QUERY_DATE just the 
date, QUERY_DATE is used to search by day, and KEY_DATE is used when time 
is required. For example, if one wants to search data for a speci�c date (yyyy/mm/
dd), “query_date  =  yyyy/mm/dd” is faster than “yyyy/mm/dd 00:00:00≤key_
date<yyyy/mm/dd+1day 00:00:00.”

2.11  Patient Privacy

In the SDM, all private information is recorded in the personal table, and the other 
tables do not include any private information, not even PATIENT_ID. Each table 
records CASE_ID instead of PATIENT_ID. PATIENT_ID and CASE_ID can be 
linked in the personal table. Therefore, privacy is protected by ensuring the security 
of the personal table. This method also allows patients to have multiple IDs. For 
example, since a patient transported by emergency vehicle may not be conscious, a 
temporary patient ID is given. If it is later found that the patient has a formal patient 
ID, then the temporary patient ID is changed to the formal ID later, or the temporary 
patient ID is registered as the new formal patient ID. In the SDM, assuming such a 
case, INTEGRATE_ID is set in each table for it to determine later whether they are 
the same person or not. Also, in the case of patients who visit several hospitals, there 
are cases where the same patient is counted as a different patient because their data 
were acquired in multiple locations. INTEGRATE_ID is also useful for avoiding 
such instances [5].
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3  AI in Surgery and the SDM

To predict results quickly, AI learning needs a huge amount of data that interpo-
lates human knowledge and experience. The accuracy of AI output depends on 
the quality and quantity of the training data. In surgical cases, the situations 
change from moment to moment; therefore surgeons must make decisions 
quickly while always predicting the prognosis. At that time, the AI that makes 
predictions based on past data greatly in�uences the judgment of the surgeon. 
However, if the learned data is of poor quality or insuf�cient, it may lead the 
surgeon to make an incorrect decision. To avoid these outcomes, the SDM stores 
all clinical data, including surgical data, into a relational database using the 
semantic data modeling method. This stored clinical data can be quickly extracted 
as clinical information when needed. The SDM’s clinical data and semantics are 
learned by the AI as training data, and in real time, the data of surgical patients 
is corrected and imported into the SDM as AI input data. The quality of such data 
is assured by using the same data model. Further amounts of data can be obtained 
by training the AI in other hospitals that use the SDM (Fig. 4).

Fig. 4 AI-aided surgery in the perioperative period
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Trends in Regulatory Systems for AI-Based 
Medical Devices and Issues in Performance 
Evaluation

Mitsuru Yuba and Yutaka Tomioka

Abstract The development of arti�cial intelligence (AI)-based medical devices is 
expanding in scope and accelerating in pace. In order to improve patient access to 
these innovative medical devices, it is necessary to consider how the views of regu-
latory authorities have evolved from the early stages of development. This chapter 
outlines (1) regulatory trends in Japan and the USA regarding AI-based medical 
devices and (2) issues in performance evaluation. To deal with the constant improve-
ments in performance that are inherent in AI, both Japan and the USA have estab-
lished systems that allow the submission of improvement plans prior to the 
application for approval of devices, thereby simplifying subsequent applications. In 
addition, although there are differences in terms of transparency regarding the appli-
cability of medical devices, the basic concept is the same in both countries. An 
important factor in the acquisition of data for performance evaluation is the protec-
tion of personal information. In Japan, a law has been enacted to allow the com-
mercial use of personal information with opt-out consent. However, to evaluate the 
performance of a product, it is of major importance to ensure and prove that the data 
are suf�ciently comprehensive to accommodate the diversity of analysis targets. As 
discussions on these issues continue into the future, medical device companies need 
to remain cognizant of the changes that occur and ensure that they stay abreast of 
the latest regulations.
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1  Introduction

The development of medical devices based on arti�cial intelligence (AI) has been 
evolving rapidly. An annual survey by the American College of Radiology revealed 
that more than 30% of radiologists used AI to improve the accuracy of diagnostic 
interpretation [1]. This embrace of AI includes computer-aided diagnosis (CAD) as 
well as computer-assisted surgical systems (CAS). AI-based CAS is expected to 
improve the safety of surgical procedures because it is associated with increased 
accuracy of surgical procedures and organ discrimination. The scope of research 
focused on developing CAS is rapidly expanding.

One consequence of the increasing diversi�cation of AI-based medical devices is 
the dif�culty of making decisions within the conventional regulatory framework. 
There is a need for regulations that take into account the characteristics of AI in 
order to prevent medical accidents and the distribution of products whose ef�cacy 
is not guaranteed. Therefore, the US Food and Drug Administration (FDA) and the 
Ministry of Health, Labour and Welfare (MHLW) and the Pharmaceuticals and 
Medical Devices Agency (PMDA) in Japan are in the process of issuing guidelines 
for performance evaluation and reforming the regulation system to accommodate 
the growing presence of AI. In particular, it will be necessary for medical device 
companies to stay abreast of changes introduced by regulatory authorities; when a 
particular product is categorized as a medical device, this directly affects the require-
ments of ef�cacy and safety imposed on the device.

Based on this background, this chapter outlines the following: (1) regulatory 
trends in Japan and the USA regarding AI-based medical devices and (2) factors 
impinging on the evaluation of AI CAS.

2  Regulatory System in the USA

The USA has been a world leader in the regulation of software as a medical device 
(SaMD) since 1998, when the world’s �rst CAD device named “Image Checker” 
(R2, now manufactured by Hologic) [2] was introduced to assist in the detection of 
breast cancer. Furthermore, in order to deal with the continuing development of AI 
technology, the twenty-�rst Century Cures Act [3] was enacted in December 2016, 
also in the USA. This Act describes the policy for the regulation of SaMD and the 
criteria for software to be regulated. The following year, the Digital Health 
Innovation Action Plan [4] was released, which included (1) the development of 
guidance on SaMD, (2) a pilot implementation of the Precerti�cation Program, and 
(3) a strengthening of the Digital Health Unit at the Center for Devices and 
Radiological Health (CDRH). Twelve guidance documents on Digital Health were 
published by the FDA between 2017 and 2020, some of which are still in draft ver-
sion at the time of writing. The Precerti�cation Program became fully operational in 
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January 2019. Furthermore, the Digital Health Center of Excellence (DHCoE) was 
established at CDRH in 2020 [5].

A key feature of the Precerti�cation Program [6] is that the FDA certi�es the 
company rather than the individual products. The reason for certifying companies 
rather than products is that it is inef�cient to evaluate the effectiveness and safety of 
each individual medical SaMD, since the functionality of a SaMD is constantly 
updated. The Precerti�cation program envisioned by the FDA entails that the FDA 
will review a company’s process of software design, veri�cation, and maintenance, 
as well as its transparency as a company, risk management, and other factors, and 
determine whether the company quali�es as a company of excellence.

In this program, the FDA certi�es whether a manufacturer develops high-quality, 
safe, and effective medical software. Manufacturers that have received such FDA 
certi�cation will be able to apply for authorization to manufacture new products 
with simpli�ed submissions and audits.

Furthermore, in April 2019, the FDA published a Discussion Paper [7] on AI/
ML-based SaMD and proposed Good Machine Learning Practice (GMLP) to 
address the characteristics of AI medical devices, which have a short life cycle com-
pared to traditional medical devices. GMLP speci�es that the FDA classi�es updates 
to AI/ML-based SaMD into three categories: (1) changes in performance as a 
device, (2) changes in data used, and (3) changes in the intended use. To accom-
modate these updates, the FDA has de�ned the SaMD Pre-Speci�cations (SPS) and 
the Algorithm Change Protocol (ACP). The SPS indicate the range of possible 
changes in AI/ML-based SaMD, while the ACP indicates details of machine learn-
ing models, data collection, and management methods. If an update is conducted at 
post-market, the FDA will determine the application category by reviewing what 
impact the update will have on the SPS and ACP. Public comments on the Discussion 
Paper were solicited, and the “Arti�cial Intelligence/Machine Learning [AI/ML]-
Based Software as Medical Device [SaMD] Action Plan” [8] was published in 
January 2021 as a response to the comments received.

3  The Applicability of Software as a Medical Device 
in the USA

The twenty-�rst Century Cures Act [3, 9] excludes certain software functions, 
including those intended for:

 A. Administrative support.
 B. General wellness.
 C. Electronic patient records.
 D. Transfer, storage, or format conversion of data or the display of related 

information.
 E. Clinical Decision Support.
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Noteworthy as a software function that is not recognized as SaMD is that the 
products intended for Clinical Decision Support (CDS) fall under this category. The 
FDA issued guidance on the medical device applicability of CDS in 2019. This 
guidance describes software classi�ed as CDS as follows: “CDS provides health 
care professionals (HCPs) and patients with knowledge and person-speci�c infor-
mation, intelligently �ltered or presented at appropriate times, to enhance health 
and health care.” It further speci�es four conditions as criteria for determining that 
a device does not fall under the category of a medical device (Table 1). Among 
them, a product developed using AI deviates from condition 4, “health care profes-
sional can independently review the basis for such recommendations that such soft-
ware presents,” due to the black-box nature of AI. As a result, a product developed 
using AI quali�es as a medical device. In addition, in a guidance issued in 2019 and 
beyond, the FDA will primarily focus on software as either CDS (Clinical Decision 
Support) [10], OTS (Off-The-Shelf) [11], GW (General Wellness) [12], MDDS 
(Medical Device Data System) [13], Mobile Medical Application (MMA) [14], or 
Medical Device Accessories (MDA) [15]. The concept of medical device applica-
bility for each of these categories is explained with speci�c examples (Table 1).

Table 1 List of guidance for applicability of SaMD, as published by FDA

Guidance title Overview

Clinical 
decision 
support (CDS) 
software

De�nition of CDS: Provides healthcare professionals and patients with 
knowledge and person-speci�c information, intelligently �ltered or presented 
at appropriate times, to enhance health and healthcare.
However, software that meets all the following four conditions does not 
constitute a medical device:
(1)  not intended to acquire, process, or analyze a medical image or a signal 

from an in vitro diagnostic device or a pattern or signal from a signal 
acquisition system

(2)  intended for the purpose of displaying, analyzing, or printing medical 
information about a patient or other medical information (such as 
peer- reviewed clinical studies and clinical practice guidelines)

(3)  intended for the purpose of supporting or providing recommendations to a 
healthcare professional about prevention, diagnosis, or treatment of a 
disease or condition

(4)  intended for the purpose of enabling such healthcare professional to 
independently review the basis for such recommendations that such 
software presents so that it is not the intent that such healthcare 
professional relies primarily on any of such recommendations to make a 
clinical diagnosis or treatment decision regarding an individual patient

(continued)
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Table 1 (continued)

Guidance title Overview

Off-the-shelf 
(OTS) software 
used in medical 
device

De�nition of OTS: A generally available software component, used by a 
medical device manufacturer for which the manufacturer cannot claim 
complete software life cycle control
Although it does not fall under the category of medical devices, it is necessary 
to have a concept regarding safety evaluation as a medical device, taking 
compatibility with OTS into consideration

General 
wellness (GW) 
products

De�nition of GW: (i) are intended for only general wellness use, (ii) present a 
low risk to the safety of users and other persons
GW categories
Category 1: An intended use that relates to maintaining or encouraging a 
general
   State of health or a healthy activity
Category 2: An intended use that relates the role of healthy lifestyle with 
helping
   To reduce the risk or impact of certain chronic diseases or conditions
   And where it is well understood and accepted that healthy lifestyle
   Choices may play an important role in health outcomes
   For the disease or condition

Medical device 
data system 
(MDDS)

De�nition of MDDS: Devices that transfer, store, convert formats, and display 
medical device data or medical imaging data
Software that merely monitors patients or stores data is not considered a 
medical device. However, software that analyzes patient data in an active 
manner, such as that used in mammography and radiotherapy, is categorized as 
a medical device

Mobile medical 
application 
(MMA)

De�nition of MMA: ①those used as an accessory to a regulated medical 
device, ②to transform a mobile platform into a regulated medical device
The app that encourages patients to change their behavior, but merely to lose 
weight or manage their daily diet, is not a medical device. However, an 
application that informs patients when it is time to take their medications is a 
medical device
This guidance provides speci�c examples of what is not a medical device 
(Appendix A), what can be a medical device (Appendix B), and what is a 
medical device (Appendix C)

Medical device 
accessories 
(MDA)

De�nition of MDA: A �nished device that is intended to support, supplement, 
and/or augment the performance of one or more parent devices
De�nition of parent device: A �nished device whose performance is 
supported, supplemented, and/or augmented by one or more accessories
An accessory is classi�ed as a medical device because it has the function of 
assisting the parent device

In contrast with the situation with respect to CAD, no guidance on determining 
the applicability to CAS has been published. However, the concept of CAD may be 
useful for the functions of CAS, such as organ identi�cation by image analysis. In 
addition, if a device is used together with CAS and improves the function of CAS, 
it can be classi�ed under MDA; the guidance discussed in this chapter may be of 
value in such an instance.
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4  Regulatory System in Japan

In Japan, the 2014 amendment of the “Act on Securing Quality, Ef�cacy and Safety 
of Products Including Pharmaceuticals and Medical Devices” [16] led to the recog-
nition of stand-alone software products as medical devices.

To address the short life cycle of AI medical devices, the MHLW issued the 
Improvement Design within Approval for Timely Evaluation and Notice (IDATEN) sys-
tem in 2019 [17]. Under this system, approved medical devices can be modi�ed by 
notifying changes in their intended use or effect, shape, structure, principle, raw materi-
als, performance and safety speci�cations, method of use, storage method, validity 
period, manufacturing method, and other factors, as long as the ethical, scienti�c, and 
reliable nature of the modi�cation is ensured. The prepared change plan can be submit-
ted together with the application materials at the time of initial application.

Furthermore, the Digital Transformation Action Strategies in Healthcare for 
SaMD (DASH for SaMD) were issued in November 2020 [18]. The DASH for 
SaMD strategy package includes (1) early identi�cation of budding seeds and 
announcement of the review approach, (2) centralized consultation services (appli-
cability consultation, development consultation, and medical insurance consulta-
tion), (3) a review system based on the characteristics of programmed medical 
devices (utilization of IDATEN), and (4) strengthening the system for early com-
mercialization of the devices. In March 2021, guidelines on the applicability of 
programmed medical devices were issued, and in April of the same year, the 
Programmed Medical Device Review Of�ce was newly established within the 
MHLW and PMDA.

Under the IDATEN system, it is possible to change the change plan itself. In such 
cases, the PMDA should be consulted to determine whether an additional quality, ef�-
cacy, and safety evaluation is required in comparison with the original change plan and 
whether an application for con�rmation of the change plan or a minor change noti�ca-
tion should be �led to implement such a change. In making a change according to the 
change plan, a comprehensive judgment is made as to whether the change is within the 
scope of noti�cation according to the scope of change or whether an application for the 
partial change of approved items should be �led and whether an evaluation of the qual-
ity, ef�cacy, and safety associated with such change is necessary.

5  The Applicability of Software as a Medical Device in Japan

The classi�cation of software as a medical device is based on the following two 
main considerations:

 ① The degree of contribution to the treatment and diagnosis of diseases in view of 
the importance of the results obtained by the programmed medical devices.
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 ② The probability of the overall risk, including the risk of affecting human life and 
health, in the event of impairment of the functions of the programmed medi-
cal device.

Since the amendment of the “Act on Securing Quality, Ef�cacy and Safety of 
Products Including Pharmaceuticals and Medical Devices” in 2014, the notice 
on the applicability of software as a medical device was slightly updated in 
2018, but with the increased development of medical devices using arti�cial 
intelligence technology. The “Guideline on the Medical Device Applicability of 
Programs” was issued on March 31, 2021 [19]. This guideline describes how the 
intended use of software determines whether it is classi�able as a medical device 
or not, as follows:

<Intended uses of software that qualify the software as a medical device>

 ① Programs that display disease candidates and disease risks based on input 
information.

 ② Programs for diagnosis, treatment, and prevention of diseases (CADe/CADx).
 ③ Programs used in combination with tangible medical devices.
 ④ Programs to assist in determining treatment plans and methods including 

simulations.

<Intended uses of software that do not qualify the software as a medical device>

 ① Programs to transfer, store, and display data acquired by medical devices for use 
as medical records.

 ② Programs for processing and treating data (excluding images and use for 
diagnosis).

 ③ Programs for education.
 ④ Programs for explanation to patients.
 ⑤ Programs for maintenance.
 ⑥ Programs to support in-hospital operations.
 ⑦ Programs for healthcare.
 ⑧ Programs equivalent to general medical devices that have little risk of affecting 

human life and health in the event of functional failure.

In terms of the probability of risk, AI functions that simply identify organs intra-
operatively can reduce risk when allied with physician experience, but when sur-
gery is performed automatically by AI, strict evaluation is required because the 
outcome depends on the AI’s functions. Therefore, it is important to determine to 
what extent the functions of AI should be advocated and to what extent interven-
tions in the surgical procedures of physicians should be authorized. The evolution 
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Fig. 1 History of regulatory measures for SaMD in the USA and Japan

of regulations and guidance related to AI medical devices in Japan and the USA is 
depicted in Fig. 1.

6  Challenges in the Evaluation of Medical Devices 
for Artiåcial Intelligence Surgery

The concept of AI surgery may be viewed from many perspectives. In order to real-
ize fully automated surgery, the technologies that are needed include robots as 
hands, scopes as eyes, and image recognition technology as the brain, all of which 
need to be coordinated by methods for integrating these technologies (Fig. 2). In 
both Japan and the USA, the introduction of “hand” robots, which are necessary 
technologies for realizing fully automated surgery, has already been initiated in the 
form of surgical support robots that are manually operated by surgeons, such as the 
da Vinci series marketed by Intuitive Surgical Inc. and Hinotori marketed by 
Medicaroid Corporation. Conversely, object recognition technology in endoscopic 
images, which is an elemental technology for automatic control and plays the role 
of the “brain” in fully automated surgery, is being developed as a recognition sup-
port tool for surgeons who perform endoscopic surgery. In Japan, the endoscopic 
realm leads the endoscopic surgical realm in tumor recognition technology imple-
mented in clinical practice. As of March 2022, six SaMD products had been 
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ba

Fig. 2 (a) Fully automatic AI surgery (future). (b) AI-aided surgery (current)

approved to enter the market by the MHLW. These products were intended to sup-
port endoscopists by detecting polyps and making a differential diagnosis of tumors 
in gastrointestinal endoscopy. Japan is a world leader in object detection technology 
in the �eld of gastrointestinal endoscopy. On the other hand, although research and 
development of object recognition technology in endoscopic images for endoscopic 
surgery are in progress, there are no SaMDs on the market at this time, and the tech-
nology is still in the development phase.

In parallel with the development of object recognition technology for fully auto-
mated surgery, SaMDs are currently being developed to provide object recognition 
assistance for surgeons and endoscopists performing endoscopic surgery and endo-
scopic diagnosis.

In the development and evaluation of object recognition technology for endo-
scopic video, whether for AI surgery or to assist surgeons and endoscopists, the 
main challenges in obtaining data for evaluation are (1) obtaining consent to use 
images for development purposes and (2) ensuring a target will be recognized, not-
withstanding the large variety of individual patient physiologies.

7  Obtaining Consent to Use Images 
for Development Purposes

Laws related to the protection of personal information are being developed 
independently by each advanced country and are being revised as needed when 
operational problems emerge. Since surgery is a medical procedure performed 
on a patient with a disease, surgical videos are treated as information that 
should be handled with special care (personal information requires special con-
sideration under Japan’s Personal Information Protection Law), since the video 
content can be used to identify a person with a disease if it is linked to informa-
tion that identifies the person. Although there is a way to anonymize the infor-
mation that identifies an individual and treat the video itself as non-personal 
information, details of the patient’s background and prognosis may also be 
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Fig. 3 Information �ow in the Next Generation Medical Infrastructure Law

necessary depending on the function of the algorithm to be developed. 
Therefore, a situation may arise in which the information cannot be anony-
mized and, accordingly, cannot be exempted from being treated as personal 
information. If the patient’s background information is not required, so that 
only the video is required, it is possible in Japan to use the video with opt-out 
consent for academic research purposes by using the video as anonymized data 
(the Personal Information Protection Law does not apply in Japan). In addition, 
a recent amendment to the law in Japan exempts the practitioner from the obli-
gation to obtain consent for the acquisition of personal information requiring 
special consideration if the video is to be used for academic research purposes. 
However, even with anonymized image data, individual consent is required to 
use the data for commercial purposes (including the development of medical 
devices), and the fact that comprehensive consent for academic research pur-
poses cannot be used for the development of medical devices is a major hurdle 
in the development process. This is one of the key points that should be taken 
into consideration when developing a SaMD. In the recent MHLW guidance for 
SaMD development, it was clarified that GCP does not need to be applied when 
evaluating SaMD for regulatory submission using images and medical infor-
mation already obtained in an actual clinical situation. The need to obtain 
patient consent for the use of patient information for commercial purposes was 
also reiterated in the guidance [20].

The Next Generation Medical Infrastructure Act enables (1) the provision of 
medical information from medical institutions to certi�ed providers and (2) the 
provision of anonymized processed information from certi�ed providers to 
users by opting out of personal information constraints resorting under the 
Personal Information Protection Law in Japan, in the manner described in the 
previous paragraph (Fig. 3). However, in terms of ensuring the quality, quantity, 
and comprehensiveness of data essential for the development of medical devices 
using arti�cial intelligence (AI), data collected under the Next Generation 
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Medical Infrastructure Act are not likely to be organized into the format desired 
by companies engaged in medical device development. As a result, it may cur-
rently be more ef�cient for companies engaged in AI medical device develop-
ment to contract with medical institutions on their own and obtain information 
that matches their needs in an opt-in manner.

8  Ensuring a Target Will Be Recognized, Notwithstanding 
the Large Variety of Individual Patient Physiologies

Object recognition in endoscopic images viewed by surgeons in endoscopic surgery 
is not easy because of the wide variety of recognition targets. Object recognition 
targets in endoscopic surgery images include surgical instruments and anatomy. The 
dif�culties in constructing algorithms for object recognition using AI techniques for 
surgical tools and anatomy, respectively, are described below.

8.1  Instruments

An argument may be made that it is relatively straightforward to improve the accu-
racy of object recognition because surgical instruments are easily distinguished 
from image backgrounds, which consist of body cavities. However, it is necessary 
to continually relearn such an algorithm in order to adapt it when a new surgical tool 
that needs to be recognized is launched in the medical �eld.

8.2  Anatomical Structures

The recognition of anatomical structures presents greater dif�culties than the recog-
nition of surgical tools. Surgeons learn anatomy as background knowledge and are 
eventually able to recognize the anatomical structures relevant to each surgical pro-
cess in endoscopic images after repeating the same surgical procedure over lengthy 
periods of time. However, the same types of anatomical structures may appear dif-
ferently in images corresponding to different patients. Therefore, it is necessary to 
train AI systems by using images that accommodate the full range of variety of a 
particular anatomical structure, in order to improve the accuracy of object 
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recognition using AI technology and reduce the risk of false recognition. A similar 
degree of comprehensiveness is required in the evaluation procedure.

8.2.1  Gender

Because of the differences in abdominal organs between men and women, it is dif-
�cult to construct an algorithm to recognize female organs based solely on images 
of male patients. The reverse is also true.

8.2.2  Physique

Anatomical tissues that are easily visible in thin patients may not be visible in obese 
patients because of adipose tissue. In machine recognition, it is necessary for both 
learning and evaluation to cover the variation in the visibility of anatomical tissues 
that arise because of differences in body size.

8.2.3  History of Medical Treatment

Surgery or radiotherapy may cause adhesions, �brosis, or other changes in the 
treated area, resulting in an appearance that differs from normal anatomical tissue. 
In both learning and evaluation, it is necessary for machine recognition to accom-
modate the range of variation in the appearance of anatomical tissues that results 
from treatment histories.

8.2.4  Individual Difference

Vascular tissue such as blood vessels, ureters and urethrae, and nerve runs vary from 
person to person, and machine recognition is often subject to error. Poor recognition 
or misrecognition is unacceptable when damage to the tissues can lead to the devel-
opment of serious complications.

It may be argued that the abovementioned variety in individual patient back-
grounds can be accommodated by increasing the number of image data used. This 
argument is countered by the rise in the number of training images for machine 
learning that this would entail and the concomitant increase in the dif�culty of 
developing effective algorithms. The number of evaluation data required would also 
become very large, in order to accommodate the diversity of individual patients’ 
anatomical tissues during the evaluation process. Furthermore, different surgical 
�elds (e.g., esophageal surgery, colorectal surgery, etc.) require different anatomical 
tissues to be recognized and, therefore, different patient backgrounds and degrees of 
variety to be considered. In the absence of a reliable method for accommodating the 
individual differences in anatomical structure, the number of data required for 
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evaluation would become intractable. Combined with the need to obtain individual 
consent, this constitutes a major hurdle to the development of AI systems and pres-
ents a problem that neither regulators nor developers have an answer to at this time.

9  Summary of This Chapter

We have summarized the regulatory trends of AI-based medical devices and the 
challenges facing the development of AI-based CAS. Both Japan and the USA are 
strengthening their review systems and exploring new regulatory frameworks to 
accommodate medical devices using AI technology, which is undergoing rapid 
technological innovation. Furthermore, both countries are considering shortening 
the review period and simplifying the required procedures through pro-active evalu-
ation of the change plan for rapidly evolving AI functionality and the evaluation of 
effectiveness and safety based invoked by the plan even after the product enters the 
market. However, there is no consensus on the types of changes that should be eli-
gible for preferential treatment, and it is expected that guidance based on accumu-
lated cases will be published in the future.

In addition, the burden of obtaining consent for the use of patient information, 
which is indispensable for the development of AI medical devices, presents another 
major hurdle to development. In Japan, there is a movement to deregulate the use of 
personal information for academic research purposes when the greater public inter-
est would outweigh individual disadvantage. Notwithstanding these developments, 
there is currently no movement toward deregulation of the requirement for an opt-in 
consent to obtain prior permission for the use of patients’ personal information 
(which would constitute personal information requiring special consideration). 
Expectations are high for a review of the operation of the Next Generation Healthcare 
Infrastructure Law framework, which allows for the provision of patient informa-
tion to third parties in an opt-out consent clause, to continue stimulating the promo-
tion of the industrial use of patient information. In addition, since discussions are 
expected to continue toward revising laws and operational methods for handling 
personal information in the medical �eld, companies and academic institutions that 
are developing AI medical devices will need to remain cognizant of ongoing regula-
tory changes and remain �exible in responding to changes in regulations and 
operations.
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Cybersecurity

Kento Hasegawa and Nozomu Togawa

Abstract Cybersecurity has become a critical issue in medical systems. To defend 
the medical system from threats in cyberspace, understanding the major technical 
factors of security mechanisms is critical. This chapter presents a brief introduction 
of security mechanisms in terms of secure data management, malicious trafåc 
detection, and supply chain risks.

Keywords Cybersecurity · Cryptography · Anomaly detection · Machine learning 
· Supply chain

1  Introduction

Because electronic devices and computers are widely used in medical equipment, 
cybersecurity risks must be considered to provide a secure and reliable medical 
system. The ISO/IEC 27000 series [1] provides best practices and recommendations 
on information security management, which cover a wide range of cybersecurity 
issues. According to the series, information security should ensure the con�dential-
ity, availability, and integrity of information. Con�dentiality ensures that informa-
tion should not be made available or disclosed to unauthorized individuals, entities, 
or processes. Availability ensures that a property should be accessible and usable on 
demand by an authorized entity. Integrity ensures that a property should be accurate 
and complete. Introducing this concept to medical equipment that stores sensitive 
information is natural. Inherently, medical equipment is expected to be highly reli-
able, and thus, availability and integrity must be ensured. However, if adversaries 
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Section 3: System Protection

Internet

Section 2: Secure Data Management Section 4: Supply Chain Risks

Fig. 1 Overview of cybersecurity described in this chapter

can invade the medical system, they may disturb the original functionalities of the 
equipment or suspend the system, resulting in the failure of availability. Protecting 
the medical system from the perspective of cybersecurity is thus important.

Figure 1 shows an overview of the cybersecurity concerns addressed in this chap-
ter. This chapter targets developers and managers of medical system and provides 
fundamental approaches and methods to implement secure mechanisms and knowl-
edge of security-related issues in medical systems. The following sections present 
cybersecurity in terms of the following topics: secure data management, system 
protection, and supply chain risks. Section 2 presents secure data management to 
protect message exchanges. Section 3 presents system protection to guard against 
invaders. Section 4 presents the risks in the supply chain of medical equipment. 
Finally, Section 5 concludes this chapter.

2  Secure Data Management

Medical systems handle sensitive information, including patients’ personal infor-
mation and medical history. When such information is shared with other equipment 
or systems, it must not be exposed. Properly encrypted data will not be exposed to 
third persons. This section describes the principles of encryption.

There are two categories of cryptographic algorithms: symmetric and asymmet-
ric [2]. Symmetric cryptographic algorithms use the same key for encryption and 
decryption. In general, symmetric cryptographic algorithms are faster than asym-
metric algorithms with respect to computation time, but the key must be unique for 
each communication channel. Conversely, asymmetric cryptographic algorithms 
use different keys for encryption and decryption. Although asymmetric crypto-
graphic algorithms require more computation time than symmetric cryptographic 
algorithms, they require only one key pair for each receiver.
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Fig. 2 Symmetric 
encryption and decryption

2.1  Symmetric Cryptography

A secret key is used for both encryption and decryption in a symmetric crypto-
graphic algorithm. AES1 is a common symmetric cryptographic algorithm that was 
speciåed as a standard symmetric-key algorithm by the US National Institute of 
Standards and Technology (NIST) in 2001 [3]. Symmetric cryptographic algorithms 
can be classiåed into two categories: a block cipher and a stream cipher. A block 
cipher algorithm processes on a åxed length of bits, while a stream cipher algorithm 
processes a given piece of plaintext sequentially.

Figure 2 shows encryption and decryption with a symmetric cryptographic algo-
rithm. The sender and receiver share the same secret key. The sender encrypts a 
piece of plaintext using a secret key and sends it to the receiver. The receiver 
decrypts the ciphertext using the same secret key and obtains the plaintext.

Symmetric cryptography allows for fast encryption and decryption, and its 
mechanism is simple compared to asymmetric cryptography; thus, the associated 
algorithms can be easily implemented in a small hardware chip. The weakness of 
symmetric cryptography is the difåculty of managing secret keys, which must be 
different from each other. When there are 푛 computers and they can communicate 
with each other, n(n − 1)/2 secret keys are required. The number of required secret 
keys also rapidly increases as the number of computers increases. If the secret key 
is leaked, the ciphertexts will be disclosed to those who can access the secret key. 
Therefore, secure management of the secret keys is critical.

2.2  Asymmetric Cryptography

An asymmetric cryptographic algorithm uses a pair of keys: a public key and a pri-
vate key. RSA2 is a common asymmetric cryptographic algorithm.

Figure 3 shows the encryption and decryption with an asymmetric cryptographic 
algorithm. The receiver årst generates a key pair: a public key and a private key. The 
public key is distributed to those who will send something to the receiver, and the 
private key is hidden. The sender encrypts the piece of plaintext with the public key 

1 AES stands for Advanced Encryption Standard.
2 RSA comes from the surnames of the designers Ron Rivest, Adi Shamir, and Leonard Adleman.
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and then sends the ciphertext to the receiver. The receiver decrypts the ciphertext 
with the private key and obtains the plaintext. Once a plaintext is encrypted with a 
public key, only the private key that corresponds to the public key used for encryp-
tion can decrypt the ciphertext. An asymmetric cryptographic algorithm is estab-
lished based on the computational difåculty of the inverse function of a certain 
function. For example, the RSA algorithm uses the computational difåculty of 
prime factorization. The key feature of asymmetric cryptography is the public key. 
Due to this feature, the asymmetric cryptography is also called public-key cryptog-
raphy. Unlike symmetric cryptographic algorithms, unique secret keys for each 
communication channel are not required; only one public key is used for each 
receiver. Asymmetric cryptography is suitable for communication between a server 
and numerous unspeciåed clients. However, the weakness of this method is its com-
putational complexity. In general, the mechanism of an asymmetric cryptographic 
algorithm is complex and requires more computation time compared to symmetric 
cryptographic algorithms. Asymmetric cryptographic algorithms are thus not suit-
able for processing large data. In practical applications, asymmetric cryptographic 
algorithms are used to exchange secret keys in symmetric cryptography. In this 
scheme, a secret key is encrypted with an asymmetric cryptographic algorithm and 
is exchanged. Then, payload data are encrypted with a symmetric cryptographic 
algorithm using the exchanged secret key.

Based on the asymmetric cryptographic algorithm, an electronic signature mech-
anism is used to ensure that the document is signed by the owner of the associated 
private key and that the document has not been tampered with after the document 
was signed. When signing a document, a hash value of the document is generated, 
and a signer encrypts the hash value using her private key and generates a signature. 
The signature is attached to the original document, and the document is signed digi-
tally. When verifying the signed document, the veriåer calculates the hash value of 
the document. Simultaneously, the signature is decrypted using the signer’s public 
key. If the calculated hash value and the decrypted message are identical, the signa-
ture is valid. Otherwise, the following situations are considered. First, the public key 
is not associated with the document, and thus, the owner of the public key is not the 
signer of the document. Second, the document has been tampered with by someone 
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after the document was signed. The new signature thus cannot be generated by the 
person who has not own the original private key.

Asymmetric cryptography has the difåculty in determining the owner of the pub-
lic keys. For seamless operation using asymmetric cryptography, an infrastructure 
for managing public keys is critical and is known as the Public Key Infrastructure 
(PKI) [4]. PKI registers, distributes, and invalidates digital certiåcates that are used 
to verify that a public key belongs to a certain entity. For simplicity, we present a 
partial operation of PKI. In PKI, certiåcate authorities (CAs) certify requested pub-
lic keys and issue digital certiåcates for each public key. The digital certiåcate con-
tains several piece of information, such as a public key, the owner of the public key, 
and the issuer of the certiåcate, and is signed using an electronic signature. CAs 
might be certiåed by other CAs recursively; thus, a parent CA certiåes a child CA, 
and the child CA certiåes a public key. Several CAs are registered as root CAs and 
are initially registered as trusted CAs in operating systems and web browsers. When 
verifying a digital certiåcate, the CAs that certiåed the digital certiåcate are recur-
sively traversed. If a CA is registered as a root CA, the digital certiåcate can be 
trusted. In general, the administrator of the system can register or remove root CAs.

2.3  Use Case for EHR

Recently, cloud systems have become widely used and are becoming more reliable 
and useful. Conventional systems that provide online services require a constantly 
running computer to be installed on the premises. Managing such a conventional 
system (i.e., “on-premise”) requires several inputs, such as human resources and 
physical space for the computers. Using cloud services, users prepare their applica-
tions, and off-site server machines are shared with other users. When the service for 
EHR is deployed on a cloud service, protecting data is necessary.

As reviewed in [5], several methods of securely managing e-health data on cloud 
services were proposed in a few years. To develop a secure service, security and 
usability must be balanced. For example, if all data are encrypted, then all of the 
data are secure. However, the computation time for encryption and decryption 
increases. In addition, searching the data that partially match a given phrase is dif-
åcult. Therefore, effective data management frameworks are required to develop a 
convenient service.

As a new scheme to manage encrypted data, homomorphic encryption has been 
studied and applied to medical systems [6]. Using homomorphic encryption, the 
computation for encrypted data can be performed without decrypting the data, thus 
creating a more secure and convenient system. The problem of homomorphic 
encryption is that the computation time is particularly high. Further research is 
expected with regard to the implementation of homomorphic encryption in real- 
world application.
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3  System Protection from Malicious Trafåc

This section presents the system protection mechanism against malicious trafåc. 
Intrusion detection systems (IDS) or årewall services protect internal networks and 
machines from adversaries.

3.1  Data Structure in a Communication Channel

As a preliminary for detection methods, the data structure in the communication 
channel is introduced. Only the transmitted data do not include information about 
the communication opponent. To transfer the data to the designated opponent, sev-
eral piece of information are attached to the data. In this subsection, the TCP/IP 
protocol stack is presented as a representative architecture of communication 
data forms.

The TCP/IP protocol stack is a common protocol architecture for electronic com-
munication, which is used in local computer networks and on the Internet. There are 
four layers in the protocol stack: application, transport, Internet, and link. In this 
section, the procedure to transmit data is considered. First, transmitted data are gen-
erated by an application in the application layer. Second, these data are processed in 
the transport layer, which splits the data into several chunks. The port number, 
which indicates the application running on a computer, and the order of the chunks 
are attached to the data as a header. Third, the data are processed in the Internet 
layer. The IP address, which shows the opponent in an IP network, is attached to the 
beginning of the data. The composed data are called a packet. Fourth, the packet is 
processed in the link layer. The MAC address, which is the address of the directly 
connected machine, is attached to the beginning of the packet. The composed data 
are then called a frame, which is transmitted to the designated MAC address via a 
communication channel, such as a metal cable or Wi-Fi. The receiver processes the 
received data in the reverse order of the above process.

The key point of the communicated data is that additional information such as 
the port number, which shows the application to be processed, and several addresses 
are attached to the data.

3.2  Signature-Based Approach

Pattern matching is the simplest implementation that can be used to examine trafåc 
data and can determine whether the exchanged data match the signatures registered 
in a list. In general, there are two pattern-matching approaches: whitelist and black-
list [7]. A whitelist-based approach examines whether the trafåc signature is accept-
able. If the data match the signature that is registered in the list, trafåc is allowed; 
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otherwise, the trafåc is dropped. A blacklist-based approach examines whether the 
trafåc signature is unacceptable. If the data match the signature that is registered in 
the list, the trafåc is denied; otherwise, the trafåc is allowed.

Selecting a whitelist- or blacklist-based approach depends on the type of con-
nected clients. When only reliable clients are connected, such as the system in an 
operation room or a closed system in a hospital, a whitelist-based approach is suit-
able. Conversely, when numerous clients may be connected, such as a public web 
service, a blacklist-based approach is suitable.

Another aspect is the computation time required for detection. Both whitelist- 
and blacklist-based approaches intuitively investigate whether an entry is registered 
in the list. The computation time to search the list is linearly proportional to the 
number of entries in the list on average. For example, if the number of entries in the 
list is doubled, the computation time also doubles on average.

3.2.1  Data Investigation

There are several types of content that can be included in a whitelist or blacklist. 
The communication data consist of a header and body. The header contains infor-
mation about the source or destination of the data, and the body contains the 
actual data.

A simple detection approach investigates the header because the format of the 
header is determined by the protocol speciåcation. Speciåcally, the source and des-
tination addresses, which are described in the header, are often investigated for 
signature-based detection. The address is used to identify the communication oppo-
nent and varies depending on the communication channel. In an IP network, a set of 
the IP address and the port number is the representative identiåer, which generally 
differs from the applications running on devices.

An IP address3 is used to identify each machine connected to an IP network, and 
the port number identiåes the application running on a machine. Speciåcally, web 
browser and video-communication applications use different ports on a computer 
but use the same IP address.

A more sophisticated detection approach investigates the body of the data. The 
body is typically not formatted, and thus, investigating the body is difåcult for 
general- purpose applications. Investigating the body of the data is often used with 
data for a speciåc application. For example, web application årewalls investigate 
the body of web communications and drop malicious trafåc [8]. Although investi-
gating the body of data requires more computational resources, more precise detec-
tion is achieved.

Investigating only the header is an effective defense. However, recent adversaries 
have used sophisticated methods to invade internal networks. If an adversary spoofs 

3 There are generally two types of IP addresses: a private IP address and a public IP address. A 
private IP address is used on a local area network, and a public IP address is used to communicate 
with computers outside the local area network (i.e., on the Internet).
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the header information using legitimate information, the data pass the investigation 
of the header. In this case, investigating the body is more effective.

3.2.2  Representation of Signatures

There are several ways to represent patterns in the whitelist or blacklist: exact 
match, wild-card match, and regular expression.

Exact match investigates whether the target value exactly matches any entry in 
the list. This approach is simple and fast to process. However, each entry corre-
sponds to only one case. If there are too many cases to be registered in the list, the 
maintenance cost is increased.

Wild-card match investigates whether the target value matches any entry with 
wild-card characters. The character “?” represents any one character, and the 
character “*” represents several characters. This approach is useful to indicate a 
group of entries. In general, the machines in a group are assigned to partially 
identical addresses. Such a case can be expressed as one entry using the wild-
card approach. Regular expression investigates whether the target value matches 
any regular expression patterns in the list. Regular expression is a powerful 
method to express the speciåc pattern of strings and is used in more recent net-
work IDSs [9]. The weakness of regular expression is its computation time. A 
complex regular expression might take a long time to determine whether the 
pattern is matched.

Supported representation patterns depend on the detection service. The goal is to 
select the most suitable method for a given system in terms of maintainability, 
detection performance, and computation cost.

3.3  Anomaly Detection

In anomaly detection, abnormal trafåc, which is unseen or uncommon compared to 
known benign trafåc, is identiåed by an anomaly detector. In conventional methods, 
anomalies can be quantiåed statistically, such as median absolute deviation or 
Mahalanobis distance [10]. Recently, machine learning has been used to effectively 
learn trafåc trends. Machine learning algorithms can roughly be categorized into 
two detection approaches: supervised learning and unsupervised learning [11].

3.3.1  Supervised Learning

In supervised learning, the classiåer model trains a training dataset that contains 
training samples and corresponding class labels. In a typical detection method, the 
labels are categorized as either benign or malicious. The trained model predicts the 
class label for a given sample. The supervised learning approach works effectively 
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when a training dataset that contains a sufåcient number of both benign and mali-
cious classes is prepared. The weakness of this approach is that the malicious sam-
ples, which are typically difåcult to collect in the real world, are necessary. In 
addition, an out-of-distribution sample, which is far from any sample in the training 
dataset, is difåcult to predict.

A support vector machine (SVM), a decision tree (DT), and a neural network 
(NN) are representative supervised learning algorithms. An SVM constructs a 
hyperplane that separates two classes of training samples with the maximum mar-
gin. A DT classiåes a given sample based on a set of conditions for each feature of 
a sample. An NN is composed of multiple layers that consist of multiple calculation 
units. The suitable algorithms and hyperparameters depend on the downstream task 
and training dataset. To construct an effective model for detection, carefully select-
ing the algorithms and tuning the hyperparameters is critical.

3.3.2  Unsupervised Learning

In unsupervised learning, the classiåer model learns a training dataset that contains 
only benign class samples and does not contain any other class labels. The classiåer 
model determines a given sample as benign when the sample is within the distribu-
tion of the training samples. Otherwise, the model identiåes the sample as an out-
lier. The strength of the unsupervised learning approach is that no training dataset 
for the malicious class is required, while its weakness is the difåculty of determin-
ing what is an outlier. If a model determines that a sample is outside the boundary 
that is constructed around the training samples with a narrow margin, several benign 
samples that are marginally outside the distribution of the training samples may be 
misclassiåed as outliers. Similar to supervised learning, carefully selecting the algo-
rithms and tuning the hyperparameters is critical.

One-class SVM, isolation forest, and clustering are representative unsuper-
vised algorithms. One-class SVM is an unsupervised version of SVM that con-
structs the hyperplane around the training samples. The isolation forest is based 
on the DT method. The clustering algorithm splits the training samples into 
several classes based on a certain distance metric. Then, the class that contains 
few samples or the class with low density compared to neighboring classes is 
determined to be outliers.

Although machine learning is an attractive approach for anomaly detection, there 
are several problems. First, machine learning algorithms require more computa-
tional resources than signature-based methods. To apply machine learning algo-
rithms to anomaly detection for a large and fast communication channel, a 
high-performance computer is necessary. Second, the machine learning algorithms 
often produce misclassiåcations. There are two types of misclassiåcation: false 
negatives and false positives. A false negative represents the misclassiåcation of 
malicious samples as benign. False negatives are unacceptable from the perspective 
of system protection, and thus, false negatives must be reduced. A false positive 
represents the misclassiåcation of benign samples as malicious. If false positives 
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increase, the number of alerts reported by the detection system increases. Thus, 
someone must conårm whether the alert is true. False negatives and false positives 
must be balanced. To seamlessly use machine learning, this balance must be tuned.

3.4  Enhanced Protection and Real-World Threats

To achieve enhanced protection, behavior-based detection methods have been 
developed. The method monitors user behavior on the system, such as the creation 
or deletion of a åle, installation of an application, and conåguration of a system set-
ting. By monitoring behavior on the system, malicious behaviors launched by mal-
ware can be detected. Recently, a high-functioning monitoring system called 
endpoint detection and response (EDR) has been developed, which is often inte-
grated with an operating system. The EDR service collects the information about 
the user’s operation and sends the collected information to the security operation 
center. By combining the IDS based on signatures or anomaly detection and EDR, 
the security of the internal network is enhanced.

Because adversaries try to defend existing protection methods, a novel attack 
scheme cannot be detected by the equipped detector. Ransomware has been a criti-
cal threat to medical systems for the past few years. Ransomware encrypts the data 
in the system, making it unusable, and asks the user for a ransom. Such ransomware 
can be countered by inspecting suspicious attachments in emails, detecting signa-
tures that are speciåc to ransomware based on executable åles, and detecting mas-
sive data rewriting operations. However, adversaries attempt to evade such detection 
mechanisms by marginally changing the internal parameters of the executable åle. 
To protect the system from novel attack scheme, maintaining latest detection rules 
and signatures is critical.

4  Supply Chain Risks

Most medical systems are implemented across numerous electronic devices, which 
are assembled through a complex supply chain. This section presents the threats 
regarding the supply chain of electronic devices from the hardware and software 
perspective.

4.1  Hardware-Level Risks

One electronic device product is composed of numerous hardware elements, includ-
ing integrated circuits (ICs), radio-frequency (RF) modules, and other circuit ele-
ments. Due to the complex supply chain of electronic devices, the risks of malicious 
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function logic (input a, b, c, d);
begin

logic = (a & b) & (c | d);
end
endfunction

Fig. 4 Overview of the hardware supply chain

hardware have been pointed out [12]. Figure 4 shows an overview of the hardware 
supply chain, which can be roughly divided into three phases: the design, manufac-
turing, and marketing phases. Many companies may be involved in the supply chain. 
In the design phase, the logic design is described in hardware description language 
(HDL), which is a type of programming language. Frequently used circuits, such as 
processors and communication interfaces, are provided as a module called intellec-
tual property (IP) by third-party vendors. If the third-party vendor is not trusted, 
such modules may be infested with malicious circuits called hardware Trojans 
(HTs). Due to overwhelming price competition, unstable supply of materials, and 
internationalization of the hardware supply chain, this scenario is somewhat 
realistic.

An HT is deactivated in an ordinal case to evade testing or to avoid being noticed 
by users. The malicious function in an HT will be activated when the trigger condi-
tion that is conågured by an adversary is satisåed. The malicious function of HTs 
may leak internal information, degrade performance, or suspend IC operation. 
Adversaries would likely aim to steal conådential information, discredit a target 
vendor, or disrupt infrastructure facilities.

All components in an electronic device should thus be securely manufac-
tured. Several methods for detecting such malicious circuits have been devel-
oped [13]. These detection methods are performed during the design or 
manufacturing phase. In the design phase, the hardware design is analyzed 
based on the structural feature of the circuit or simulation using the test inputs. 
In the manufacturing phase, the manufactured circuit is analyzed using side-
channel analysis, including the monitoring method of consuming power or elec-
tromagnetic waveform, or is veriåed in terms of whether the circuit operates 
correctly according to the speciåcation. Machine learning is often used in these 
detection methods [14]. Although the detection methods were developed, com-
plete elimination of malicious circuits is impossible. To mitigate the threats of 
HTs, using products from trusted vendors for security-sensitive systems is 
recommended.

Security risks in hardware devices have been emphasized in recent years. As 
discussed above, the detection of malicious functions from a manufactured hard-
ware device is difåcult. From the perspective of users of medical system, it is impor-
tant to carefully verify the reliability of the product vendor and the components used 
in the product.
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4.2  Software-Level Risks

Electronic devices are often controlled by software that can be æexibly conågured 
after manufacturing. There are several levels of software, such as årmware, operat-
ing system, and application. The most important process is to ensure that all soft-
ware has been updated to its latest version.

Software applications often support automatic updating. It is useful for users to 
maintain the latest application without users’ interaction. However, skillful adver-
saries may exploit the automatic updating scheme and can inject malware into the 
target system. In this case, trafåc may not be dropped by detection systems because 
the communication channel is registered as benign in an ordinal case. To protect the 
system from such a case, behavior-based detection scheme effectively works.

Cybersecurity vulnerabilities are reported as common vulnerabilities and expo-
sures (CVEs).4 The number of reported CVEs is increasing each year. Even if a 
computer is provided by a reliable vendor, any potential system vulnerabilities due 
to bugs in development and unintended run-time errors can occur. Thus, most ven-
dors provide software updates that åx security holes if a vulnerability is found and 
could pose a serious threat to the product. From the perspective of users, it is impor-
tant to apply the provided update to the relevant product. To ensure that the software 
version is updated when needed, regular (e.g., monthly) maintenance is effective.

Free software programs and unknown open-source programs should be used 
carefully. If it is necessary to use them, the sandbox provides a disposable environ-
ment that is separated from the host system. Suspicious software can be operated in 
the sandbox and veriåed if any harmful behavior occurs. Even if the software mali-
ciously behaves, the operation does not affect the system outside of the sandbox 
environment.

To protect from software-level risks, it is important to use security protection 
services, such as a trafåc monitoring service and a behavior-monitoring service. 
Also, regularly maintaining the latest protection service is important.

5  Conclusion

This chapter provides an overview of the cybersecurity surrounding the medical 
environment. First, the secure data management for protecting the exchanging mes-
sages is presented in Sect. 2. There are several cryptographic algorithms, and it is 
better to choose an appropriate algorithm depending on the required application. 
Second, anomaly detection to protect from invaders is presented in Sect. 3. There 
are several detection methods, and machine learning is being applied to detection 
mechanisms. Finally, the risks in the supply chain of medical equipment are 

4 The website is available in https://www.cve.org/.
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presented in Sect. 4. To mitigate security risks, choosing trusted vendors and main-
taining the latest software versions are critical.

Security is a continuous game in which adversaries try to defeat defenders with 
new attack schemes and defenders try to defeat such attacks. From the perspective 
of developers or managers of medical systems, using products from trusted vendors, 
monitoring security-related trends, and following security recommendations are 
important precautions.
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Abstract With the advent of deep learning, the development of artiåcial intelli-
gence (AI) in the medical åeld has been rapid. In this chapter, a clinical case in the 
åeld of neurosurgery is investigated, i.e., the applications of AI in neurosurgery and 
image diagnosis are introduced, and prospects for both åelds are predicted.

In neurosurgery, navigation systems which project the location of surgical tools 
to pre- or intraoperative MRI or CT are useful in facilitating tumor removal. In the 
navigation systems, AI is used for detecting the treatment site and type of surgical 
tool from the microscopic image and identifying the surgical process in the naviga-
tion system.

In the image diagnosis, AI is used for tumor segmentation and predicting molec-
ular diagnosis from preoperative MRI.  In glioma resection, treatment strategy is 
depending on their molecular subtype. However, biopsy or surgery is needed to 
diagnose them.
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1  AI-Powered Medical System

The policy of companies to actively engage in research and development in the 
medical åeld has been accelerating for the past 10 years. With regard to appealing 
points in research and development, there are conspicuous proposals to push the use 
of AI to the forefront and actively utilize it. The government also presented 25 mis-
sion target examples in the “Moonshot Research and Development Program” [1], 
and the “Development of an AI & robot system that autonomously discovers the 
Nobel Prize by 2050” was nominated. The aim is to research and develop in such a 
way that the era in which AI and robot systems autonomously discover the Nobel 
Prize for humans will be reached in 30 years. Many companies in the medical åeld 
refer to these trends worldwide.

Regarding the utilization of medical data, the Nihon Keizai Shimbun, on July 9, 
2019, is described as follows: “The Next Generation Medical Infrastructure Law 
was enacted in May 2018, which allows nationally certiåed businesses to collect 
and anonymize medical data and provide it to universities and pharmaceutical com-
panies without the refusal of patients. However, there is a shortage of human 
resources who can collect medical data, anonymize, and analyze big data; therefore, 
we will develop human resources with the university selected by the Ministry of 
Education, Culture, Sports, Science, and Technology as leader of the analysis. The 
most effective treatment methods and drugs may be studied depending on the 
patient’s age, gender, and symptoms. Computed tomography (CT) image data are 
analyzed using AI to analyze cancer. It is also expected to lead to early detection.”

In this way, we introduce the current situation in which research and develop-
ment that utilize AI have deeply penetrated medical systems and data. In the next 
section, following the AI classiåcation, we add explain examples of AI utilization 
initiatives in the åeld of neurosurgery.

2  Classiåcation and Application of AI

2.1  Artiåcial General Intelligence (AGI) and Artiåcial Narrow 
Intelligence (ANI)

Artiåcial general intelligence (AGI) is AI that performs intelligent (human-like) 
processing in all areas. Although it is predicted that it will be created in the distant 
future, many people think that it is difåcult. The reason is that the data that should 
be the correct answer are not accurate (classiåcation and name may differ depend-
ing on the occupation; and, in pathological diagnosis, the result may differ depend-
ing on the biopsy site, time, and collection environment). First, the medical diagnosis 
itself (such as hyperactivity) may be difåcult, and big data that should be the basis 
of AGI do not yet exist. When making a hypothesis that AGI predicts human 
thoughts, it is an unsolved problem of how to reæect 70% of thoughts that are not 
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verbalized and how the computer predicts AGI. For a medical diagnosis, it is clearly 
stated that the doctor (human) is responsible for the ånal diagnosis, and AI assists 
the diagnosis; thus, the aforementioned AGI is not universal, at least in the medi-
cal åeld.

However, ANI exerts its abilities only in a speciåc area, and almost all of AI in 
the world refers to ANI. This chapter is also limited to ANI and explains the AI used 
in the åeld of neurosurgery.

2.2  ANI and Machine Learning (ML)

To achieve narrow AI, the core technology is machine learning (ML). ML is a data 
analysis method that allows computers to learn rules and patterns behind the data. It 
differs from conventional programs in which the rules are written by humans. A 
computer deånes its own rules and processes information, making it appear as if the 
computer has knowledge. Studies on ML have been conducted for more than 
50 years, and various algorithms have been proposed in the meanwhile. Currently, 
deep learning is the most promising approach.

2.3  Deep Learning (DL)

Deep learning (DL) is a ML method that uses a multilayered neural network (deep 
neural network) model. The key feature of DL is “representation learning,” which 
extracts effective features for performing tasks from higher-dimensional data, such 
as images, sounds, natural language, and time-series signals. “Representation learn-
ing” is expected to enable computers to recognize minute features, which humans 
cannot do, by processing higher-dimensional signals through neural networks with-
out the need for human knowledge.

In particular, image recognition using DL is promising in the åeld of medicine, 
where various images are used, such as radiological, pathological, and endoscopic 
images. DL, which is widely used in image recognition, is a convolutional neural 
network (CNN). A CNN repeats the processing that compresses features in  local 
regions of an image with ålters, transfers them as feature maps to the next layers, 
and, ånally, extracts features from images. A CNN was årst used in LeNet [2] pro-
posed by Yan LeCun in 1999. LeNet is a ML model that consists of three convolu-
tional layers and two fully connected layers; it is a true original CNN. Subsequently, 
in 2012, AlexNet [3] developed by a University of Toronto team led by Geffery 
Hinton won the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) by 
a wide margin over the scale-invariant feature transform (SIFT) + Fisher Vector + 
Support Vector Machine (SVM) that had been the de facto standard up to that time. 
This has brought DL into the spotlight. Since the release of AlexNet, studies on DL 
have progressed rapidly, and ILSVRC scores have continued to be updated annually.
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3  Neurosurgery and AI

3.1  Narrow and Deep Microscopic View in Neurosurgery

Taking the case of neurosurgical tumor resection as an example, the dura mater sur-
rounding the brain can ånally be visualized by opening a part of the skull; the dura mater 
and arachnoid incision expose the brain surface. Since the cerebral blood vessels are 
very thin and it is difåcult to distinguish the boundary between the tumor and normal 
brain tissue with the naked eye, the tumor was identiåed and removed in a narrow and 
deep åeld of view after preparing an operating microscope. The surgeon and his assis-
tant were forced to move their hands in a narrow space for a long time, and other doctors 
and surgical staff viewed the images on the microscope monitor installed in the operat-
ing room to oversee the surgery. It is clear that neurosurgery is backed by the experience 
of the surgeon, and the doctors and operating room staff around him attempted to over-
come the difåculties and smoothly manage the surgery.

An innovative neurosurgical technology developed in recent years is the naviga-
tion system, which projects the position of the surgical instrument using magnetic 
resonance imaging (MRI)/CT performed before or during surgery. Navigation is 
extremely important for surgeons to facilitate tumor removal, just as it is indispens-
able for driving a car. A navigation system that promptly updates MR images local-
izes accurately the surgeon’s procedure for tumor removal and helps understand the 
position of the surgical area has been implemented; thus, it facilitates groundbreak-
ing precision-guided surgery. This technique combined with intraoperative MRI has 
the potential to provide maximum tumor resection, reduce the intraoperative resid-
ual tumor, and prolong the patient survival rate [4]. By applying a navigation system 
using intraoperative MRI, research using AI is also being conducted for the afore-
mentioned technical learning of skilled neurosurgeons and smooth operation of the 
operating room, including the operating surgical staff(Fig. 1) [5].

The developed system is for surgical process identiåcation computers to acquire 
information from MRI images, navigation logs, and microscopic images and to 
automatically grasp the æow of surgery during and after the process. It consists of a 
monitor that presents information such as the æow of surgery and the next process 
for surgeons, young doctors, and surgical staff [5].

In the information sharing system shown in Fig. 1, AI is implemented to identify 
the surgical process by acquiring elements from multiple medical information (pre-
operative and intraoperative MRI images, surgical navigation system, and micro-
scopic images) in information processing technology, such as ML. Regarding the 
elements of the surgical process, the surgeon acquires two points, i.e., the intraop-
erative treatment site and type of surgical tool used, from image processing and DL, 
as well as ML that is used to identify the process based on the surgical process 
model. This method consists of two major processes. First, feature extraction is 
performed using ML, and then, identiåcation is performed based on the process 
model from the acquired information.
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Fig. 1 Information sharing concept of intelligent operating room (neurosurgery)

In feature extraction, the type of surgical instrument used by the surgeon and 
treatment site are identiåed by image processing, and the four treatment sites 
are deåned as “brain surface,” “inside tumor,” “nearby normal tissue,” and “out-
side surgical åeld.” To specify the brain region, a labeled segmentation image 
was created in image processing. Then the features of the surgical instrument 
were extracted together with the log information of the surgical instrument tip 
position data acquired from the surgical navigation system. In addition, the type 
of surgical instrument is obtained from the microscopic image using the learn-
ing dataset created in advance using the DL method You Only Look Once 
(YOLO) [6].

In identiåcation, the two types of information (position and type of surgical 
instrument) are integrated and saved as time-series feature data every second for 
input information; the surgical process is identiåed by the hierarchical hidden 
Markov model (HHMM), which is tailored to the hierarchical model. The adopted 
HHMM is expected to be a high-speed ML method that considers real-time perfor-
mance [7]. The identiåcation was conducted from the årst layer deåned in the surgi-
cal process model to the third layer in order; the Viterbi algorithm that reduces the 
amount of calculation was adopted, and the surgical process with the highest prob-
ability was calculated as the outcome.
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3.2  Brain Functional Mapping Process During Neurosurgery

In the previous section, ANI was used for process identiåcation using a model for 
awake surgery as an example. In awake surgery, a brain function examination (called 
brain function mapping) is performed on the brain surface and the area around the 
tumor to reduce the risk of intraoperative and postoperative complications (lan-
guage and/or dysfunction) of tumor removal.

From the analog information recorded by video in the operating room, the posi-
tion information of the probe that electrically stimulated the brain surface was 
recorded as log information; then, it was stored as digital information consisting of 
brain function information, together with examination task information, electrical 
stimulation conditions, and patient reaction information. We developed a system 
that can be used widely in the åeld of neurosurgery(shown in Fig. 2). Speciåcally, 
an antenna device was attached to the electrical stimulation probe in a navigation 
system (manufactured by BRAINLAB) that reads intraoperative MR images. The 
images and position information are read through the image analysis software 3D 
Slicer [8], and the position of the electrical stimulator is acquired as log information 
and digitized to create a brain function database. This digitized reaction point on 
intraoperative MRI (right upper part of Fig. 2) was image-converted and normalized 
on a normalized brain [9] (left lower part of Fig. 2) using SPM12. Non-rigid regis-
tration [10] and SPM12 [11] were used for coordinate transformation of response 

Fig. 2 Digitized brain-mapping data transformation on normalized brain
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Fig. 3 Projection of brain function onto patient’s intraoperative MRI

points. Finally, the brain function response points of multiple cases were aggregated 
as position information on the normalized brain. These multiple response points 
provide useful suggestions for estimating brain functions (motor, language, higher 
brain function, etc.). Thus, a normalized brain with useful information such as tasks 
presented by the task examiner (picture naming, verb generation, counting, kanji/
hiragana reading, calculation), electrical stimulation intensity, threshold value, and 
so on (right lower part of Fig. 2) is worthy of attention.

The electrical stimulation site during brain function mapping was recorded at the 
intraoperative MRI position during navigation, and the digitized position informa-
tion was converted into the standard brain together with the brain function informa-
tion and stimulation threshold [12].

The normalized brain with the aforementioned brain function information (called 
the normalized brain function atlas) also adds digital information other than brain 
function (i.e., pathological åndings, postoperative dysfunction, postoperative treat-
ment, treatment results, recurrence rate, and survival rate). Additionally, image con-
version (reverse conversion to the procedure in Fig. 2) was likely performed on the 
patient’s MRI, and the brain function of each patient could be predicted preopera-
tively or intraoperatively (as shown in Fig. 3). After comparing with the mapping 
results performed in actual surgery, we have investigated the accuracy of this brain 
function prediction and aimed to develop an application of the normalized brain 
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function atlas. Compared with the normalized brain, individual patient brain infor-
mation (postoperative brain deformation, movement/plasticity of functional site at 
tumor recurrence, and temporal change of pathological image due to change in 
genetic information) was added to create a database. This database is expected to 
accelerate research and development using ANI as a means of using training data.

The normalized brain was projected onto the preoperative and intraoperative 
MRI of each patient to predict preoperative and intraoperative functional sites. This 
information was compared with the actual intraoperative mapping record to verify 
the accuracy [12].

3.3  Future of Neurosurgery: Postoperative Prediction Using 
Intraoperative AI

In brain tumor treatment, the tumor removal rate, motor/language function compli-
cation rate, and higher brain function evaluation that affects rehabilitation impact 
the patient’s postoperative life. When a preoperative image is created by projecting 
the created normalized brain function atlas onto the brain of each patient according 
to Fig. 3, it is expected to reæect on the survival curve according to the extent of 
resection and make postoperative predictions (shown in Fig. 4) [13]. In this case, the 
brain function is likely arranged in a map such as A to D on the 3D mesh image of 
the brain surface of the individual patient. The survival rate increases according to 

Fig. 4 Predictive neurosurgery
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the tumor removal rate, but the probability of postoperative complications increases 
as well. The survival rate and complication rate of patients are modiåed based on 
treatment results of the hospital where the surgery is performed and the malignancy 
of the removed tumor; further, the malignancy of the removed tumor, treatment 
results at the hospital facility, and results of postoperative rehabilitation are used as 
a database. If postoperative predictions by AI analysis become routine, preoperative 
explanations for individual patients will become considerably more accurate in 
the future.

If data analysis by ANI develops, it will be possible to revise the intraoperative 
treatment policy based on intraoperative pathological åndings, functional mapping 
results, tumor resection, and so on while assuming preoperative prediction, as 
described above. The analysis of electronic medical record data accumulated in 
hospital facilities and the presentation of information to surgeons based on monitor-
ing results of function mapping updated in real time could provide proposals for 
advanced intraoperative treatment to minimize postoperative recurrence and pro-
long life prognosis. Furthermore, it is predicted that the time will come when each 
patient will be presented in real time, such as proposals for higher brain function 
recovery and maintenance programs, as well as motor language function recovery 
and maintenance programs to facilitate postoperative social recovery.

Preoperative survival is estimated from the tumor removal rate, and the prob-
ability of postoperative complications predicted from the brain function atlas is 
estimated. Patients will be provided with speciåc information while referring to 
the presentation of similar cases by AI, including postoperative therapy and 
rehabilitation [13].

4  Glioma Diagnostic Imaging and AI

In the åeld of neurosurgery, many studies on MRI using DL, such as brain tumor 
segmentation, prediction of glioma grading according to the World Health 
Organization (WHO) classiåcation, and molecular diagnosis, have been reported. 
The glioma grade and molecular subtype provide important information for treat-
ment strategies. However, biopsy or surgery is required to diagnose this condition. 
Therefore, it is beneåcial to predict these factors using MRI before surgery. Many 
studies have applied other ML methods, such as SVM or random forest to MRI 
imaging, but this chapter focuses only on DL.

4.1  Dataset

The datasets of the Brain Tumor Segmentation (BraTS) Challenge provided by 
the Medical Image Computing and Computer Assisted Interventions (MICCAI) 
society are often used in studies of ML related to gliomas. They consist of four 
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modalities, native (T1), post-contrast T1-weighted (T1Gd), T2-weighted (T2), 
and T2 æuid- attenuated inversion recovery (FLAIR) volumes, and include hun-
dreds of glioma cases. Furthermore, they have a segmentation mask of tumor 
regions and labels for grade IV glioblastoma (GBM) in the WHO classiåcation 
and lower-grade glioma (LGG) of grades II and III.  For molecular diagnosis 
prediction, imaging data from the BraTS or Cancer Imaging Archive (TCIA) are 
often combined with genomic information from The Cancer Genome Atlas 
(TCGA), or in-house data are used.

4.2  Evaluation Methodology

The holdout method is used for the evaluation of DL models, where test data are 
reserved in advance; the model is trained with the remaining data and then evaluated 
with the test data and cross-validation method, where all data are divided into sev-
eral groups for training and evaluation. The holdout method is effective in the case 
of sufåcient (tens of thousands) data to save training and evaluation time. However, 
for datasets of hundreds to thousands of cases, the evaluation results may vary sig-
niåcantly depending on the selection of test data. The cross-validation method, 
which evaluates all data, is more reliable even for a small dataset because the effect 
of data selection in each group on the ånal result is small. Nevertheless, in the case 
of big data, it takes too long for training and evaluation.

4.3  Brain Tumor Segmentation

In an early study using CNNs for brain tumor segmentation in MR images, Havaei 
et  al. built a CNN-based segmentation model for the BraTS 2013 dataset and 
achieved Dice scores of 0.88, 0.79, and 0.73 for complete, core, and enhancing 
regions, respectively [14]. Their model was optimized for brain tumor segmentation 
using two paths that analyzed the visual details of the region around that pixel and 
its larger context. Furthermore, as a method to correctly train the model on extremely 
imbalanced data (where 98% of the pixels were normal tissue), they used two-phase 
training, i.e., the entire model was trained with label-balanced batches, and then 
only the output layer was trained with the actual label distribution.

The innovation in the network model for the segmentation task is U-Net [15]. 
U-Net is a CNN-based network that consists of encoders and decoders; it has 
the “connection path” that connects the encoders to decoders directly. In the 
field of neurosurgery, Dong et al. implemented segmentation using a 2D U-Net 
model and achieved Dice scores of 0.86, 0.86, and 0.65 [16]. U-Net has been the 
de facto standard of ML models for segmentation and has been used in recent 
studies [17–19].
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4.4  Prediction of Glioma Grading in WHO Classiåcation

In an early study of glioma grading prediction, Yuehao et al. improved the accuracy 
by 18% in the GBM and LGG classiåcation of the BraTS 2014 dataset with three 
convolutional layers [20]. Although the BraTS 2014 dataset had 195 cases, the num-
ber of LGG cases was less than 15% of the total, making the prediction difåcult. 
Under these circumstances, CNN achieved higher accuracy than conventional neu-
ral networks in ML for MRI.

In BraTS2017, the number of cases increased to 285, imbalance of LGGs 
improved to 25% of the total, and classiåcation of grading using CNN showed rapid 
development. Ge et al. achieved an accuracy of 90.87% for GBM and LGG classi-
åcation [21]. In their study, enhanced T1, T2, and FLAIR images were entered into 
seven-layered CNN models, and feature maps from all models were concatenated 
and entered into fully connected layers. In comparison with the models by Yuehao 
et al., the scale of the network became larger (deeper).

Khan et al. adapted the VGGNet base model for GBM and LGG classiåcation 
and achieved accuracies of 97.8%, 96.9%, and 92.5% in the BraTS 2015, 2017, 
and 2018 datasets, respectively [22]. In their method, the contrast of MR images 
was enhanced with edge-based texture histogram equalization, and transfer 
learning was used with a pre-trained model of VGG16 and VGG19. Furthermore, 
the features extracted by the CNN were processed using correntropy via mutual 
learning and extreme ML, which removed redundancy between features and 
selected only robust features. Their study implicates recent trends in DL in the 
medical åeld, which shifted from improving the network structure to developing 
the pre-and post- processing stages. Although the state-of-the-art models of 
image recognition have become increasingly deep, such as AlexNet, VGGNet, 
and residual neural network (ResNet), they were too deep to train with good 
generalizability in the åeld where it was difåcult to collect a large amount of 
data. Therefore, recent studies have often used pre-trained models with a mod-
erate number of CNN layers.

4.5  Prediction of Glioma Molecular Diagnosis

LGGs are classiåed into three molecular subtypes based on the presence of muta-
tions in the isocitrate dehydrogenase (IDH) gene and co-deletion of chromosome 
arms 1p and 19q (1p/19q). Oligodendrogliomas are deåned by the presence of an 
IDH mutation and a 1p/19q co-deletion. Astrocytomas without 1p/19q co-deletion 
are classiåed as IDH-wild-type or IDH-mutant diffuse astrocytomas, depending on 
the IDH genotype. The prognosis for LGG patients and recurrence patterns vary 
depending on the molecular subtype; therefore, tumor extraction strategies are dif-
ferent [23, 24].

Clinical Case: Neurosurgery

https://pezeshkibook.com



94

Matsui et al. achieved an accuracy of 68.7% in the classiåcation of molecular 
subtypes of LGGs using in-house data [25]. In this study, factors effective in LGG 
molecular subtype classiåcation, such as T2-FLAIR mismatch [26, 27], the tumor- 
to- normal ratio of methionine positron emission tomography (PET) [28, 29], and 
calciåcation in CT images [30], were entered into fully connected layers in addition 
to feature maps of image data from CNN outputs. Furthermore, this model classi-
åed three molecular subtypes directly to make effective use of model performance; 
in contrast, conventional studies [31] followed clinical protocols that diagnose IDH 
mutations and 1p/19q co-deletions.

In a recent study on the classiåcation of molecular subtypes, Li et al. predicted 
classiåcation of grading (GBM or LGG), IDH mutation of LGG, 1p/19q co-deletion 
of LGG, and IDH mutation of GBM and achieved accuracies of 89%, 80%, 83%, 
and 74%, respectively [32]. In their study, the models were designed to predict 
sequentially from grading to each molecular diagnosis, which was similar to the 
clinical æow. In particular, IDH mutations should be predicted in GBM and LGG 
separately because the IDH gene in GBM is biased toward the wild type.

4.6  Prospects of AI Image Diagnosis

In most studies on radiological image analysis of glioma, the state-of-the-art ML 
model has been implemented with a delay of approximately 3 years. Based on this, 
it can be predicted that “self-attention” and “contrastive learning” are two of the 
most important methods in this åeld.

Self-attention is a DL model that has been proposed for natural language 
processing and recently been applied to image recognition. In contrast to the 
CNN process of the relationship between a pixel and a limited area around it, 
self- attention uses the relationship between a pixel and the entire image to 
extract features. Furthermore, in contrast to CNNs, where the weights of the 
weighted sums are åxed, self-attention allows for highly æexible feature extrac-
tion because the weights change for each pixel. With regard to the application of 
self-attention to image recognition, there are many possible models, such as a 
hybrid of self-attention and CNN, named CoAtNet [33], that has CNN and self-
attention blocks.

Contrastive learning is a self-supervised learning method for learning a large 
amount of data without labeling by comparing and classifying them based on 
their similarity. In åelds such as medical data, where it is difåcult to collect a 
large amount of datasets and specialized knowledge and analysis are required to 
create correct labels, it is advantageous to make the best use of collected data 
without labeling. SimCLR [34] is a typical contrastive learning method.

M. Tamura et al.

https://pezeshkibook.com



95

5  AI with Society (Limitations/Future Implications)

Although it is predicted that the AGI mentioned above will be a future story, there 
is already a society in which ANI surpasses human thinking. Currently, it may be far 
from the time when AGI can diagnose beyond humans and replace mainstream sur-
gical treatment. Furthermore, the recipients of surgical treatment are humans, and 
the goals of treatment vary among individuals. People have different values and 
thoughts in their social lives, and it seems difåcult to make treatment decisions 
based on a uniform rule. Naturally, medical treatment is aimed at treating diseases, 
and ANI that surpasses human thinking always supports surgical treatment; still, 
doctors’ unwavering diagnosis and treatment, as well as maximum patient satisfac-
tion, are expected.
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Clinical Case: Cardiac Surgery
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Abstract Cardiac diseases are the leading cause of death in several countries. They 
include not only chronic conditions such as arrhythmias and cardiomyopathies but 
also acute and serious diseases with cardiovascular events such as myocardial 
infarction. Considering the importance of cardiac function in maintaining life, early 
detection of cardiovascular diseases and appropriate diagnosis and treatment greatly 
affect the prognosis of patients.

In many cases, surgical procedures play an important role in the treatment of 
cardiac diseases, including urgent cases and those that are non-responsive to medi-
cation. In addition to highly invasive cardiac surgeries, such as coronary artery 
bypass surgery and heart transplantation, which are often performed under open 
chest conditions, minimally invasive cardiac surgery has been expanding in recent 
years, with an increase in robotic surgeries and percutaneous interventions using 
catheters and other devices.

Against this background, there is a growing demand for minimally invasive car-
diac imaging that can provide preoperative information on the structure and func-
tion of the heart and any associated abnormalities. In the cardiovascular åeld, as in 
other medical åelds, advances in imaging technology are improving evidence-based 
treatment decision-making and clinical outcomes. Simultaneously, there are grow-
ing expectations for artiåcial intelligence (AI) and machine learning (ML) 
approaches to properly and efåciently interpret the ever-increasing volume of clini-
cal data. This chapter describes the major classiåcations of cardiac diseases and 
their treatment procedures. Next, each diagnostic modality for cardiac disease is 
outlined, with examples of recent applications of AI technology to these modalities.
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1  Cardiac Diseases and Procedures

This section describes the classiåcation of major cardiac diseases and associated 
non-pharmacological treatments, including percutaneous intervention. Figure  1 
shows basic anatomy related to cardiac diseases and surgeries.

1.1  Coronary Artery Disease (CAD)

CAD is an ischemic disease where the coronary artery, which is responsible for 
blood circulation within the heart itself, is narrowed and the blood supply to the 
myocardium is disrupted. The narrowing is attributed to atherosclerosis, which is 
caused by the accumulation of cholesterol and other substances in the inner walls of 
the coronary arteries. This condition is called angina pectoris before the occurrence 
of complete stenosis and myocardial infarction (MI) after complete stenosis.
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Fig. 1 Basic cardiovascular anatomy
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1.1.1  Coronary Artery Bypass Graft (CABG)

CABG is a surgical procedure to bypass blood æow from the aorta to the end of a 
narrowed coronary artery using grafts obtained from sources such as the great 
saphenous vein in the leg, internal thoracic artery in the chest, radial artery in the 
wrist, and gastric aorta in the stomach. Recently, off-pump surgery, which is per-
formed without stopping the heart, and minimally invasive surgery using endo-
scopes and surgical robots are also being performed.

1.1.2  Percutaneous Coronary Intervention (PCI)

PCI is a treatment to relieve coronary artery stenosis by introducing a catheter into 
the heart through a blood vessel at the base of the leg, arm, or wrist. A balloon dila-
tation procedure is performed using a catheter with a balloon attached to its tip to 
expand the stenosed coronary artery from within. Recently, metal stents have been 
widely used to prevent postoperative restenosis. The development of drug-eluting 
stents, in which the surface of the stent is coated with a drug, has reduced the risk of 
restenosis [1], and PCI has become more widely used in recent years [2, 3].

1.2  Valvular Disease

The heart has four valves: the tricuspid, pulmonary, mitral, and aortic valves, which 
control blood æow in the heart. Valvular disease is a condition in which these valves 
malfunction due to congenital (e.g., bicuspid aortic valve) or acquired reasons (e.g., 
sclerosis and calciåcation due to aging and infection). Valvular disease is broadly 
classiåed as either regurgitation or stenosis. Disorders of the mitral and aortic 
valves, which are involved in left ventricular blood æow, are more likely surgical 
targets because of their high risk of causing serious symptoms such as angina pec-
toris, heart failure, and cerebral infarction due to atrial åbrillation.

1.2.1  Valve Replacement

Replacement of malfunctioning valves with prosthetic valves is a surgical proce-
dure. Prosthetic valves can be broadly classiåed into mechanical valves made of 
carbon or other materials and biological valves derived from living tissues. The 
choice between mechanical and biological valves is based on the safety and durabil-
ity of blood coagulation.

In the past, most valve replacement procedures were performed under open chest 
conditions, but recently, transcatheter aortic valve replacement (TAVR), which uses 
a catheter for minimally invasive replacement of the defective valve with a 
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biological valve, has attracted attention as a minimally invasive valve replacement 
procedure (also known as transcatheter aortic valve intervention, TAVI) [4].

1.2.2  Valvuloplasty

Prosthetic valves, both biological and mechanical, used in valve replacement sur-
gery have fragility and blood coagulation issues. Valvuloplasty, on the other hand, 
preserves the patient’s valve and restores function by suturing of the valve and sur-
rounding tissue. Valvuloplasty has the advantage of a lower risk of blood coagula-
tion than valve replacement, but also requires a skilled surgeon. The choice of 
procedure is based on the preoperative and intraoperative diagnosis of the valve.

1.3  Aortic Aneurysm

Aortic aneurysms can be classiåed into three main types: true aortic aneurysms, in 
which the arterial wall is normal; dissected aortic aneurysms, in which the arterial 
wall is detached and a pathway for blood æow called a false lumen is created within 
the vessel; and pseudoaneurysms, in which the outside of the torn vessel wall under-
goes thrombosis and seals the leakage of blood. Aortic aneurysms are primarily 
caused by atherosclerosis. They are most common in the abdominal and thoracic 
aortas. Aortic aneurysms due to hereditary Marfan syndrome occur predominantly 
in the ascending aorta. When an aortic aneurysm ruptures and leaks a large amount 
of blood, the patient experiences shock and rapidly deterioration leading to death.

1.3.1  Replacement with Vascular Prosthesis

In this procedure, the vessel associated with the aortic aneurysm is replaced with a 
tubular artiåcial vessel made of woven chemical åber. If the aneurysm is at the aor-
tic root and is accompanied by aortic valve regurgitation, in which the aortic valve 
annulus is enlarged, it may be replaced with an artiåcial vessel with a valve (Bentall 
procedure). In most cases, the procedure is performed via open thoracotomy or 
abdominal surgery.

1.3.2  Endovascular Aortic Repair (EVAR)

EVAR is a procedure used to prevent aortic aneurysm rupture using a stent graft, 
which is a metal framework attached within an artiåcial blood vessel. The stent 
graft is introduced from an artery in the groin to the site of the aortic aneurysm, 
enlarged, and implanted. The procedure is less invasive than open thoracotomy or 
open abdominal replacement [5].
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1.4  Arrhythmia

In a normal heart, electrical excitation waves generated in the sinus node propagate 
and disperse regularly through the stimulation conduction system, causing rhythmic 
contraction and relaxation of the myocardium, thus realizing a pumping function 
that distributes blood throughout the body. Disruption of this order of excitation 
causes arrhythmia. Based on electrocardiographic åndings, arrhythmias can be 
broadly classiåed into extrasystoles, which show excitation at abnormal times; 
bradyarrhythmia, which shows slow pulses; and tachyarrhythmia, which shows 
rapid pulses. Bradyarrhythmia is caused by a disturbance of the sinus node or 
blocked conduction, whereas extrasystoles and tachyarrhythmia are caused by 
abnormal excitation. Tachyarrhythmia can be further divided into tachycardia, 
involving periodic excitation with a fast rhythm, and åbrillation, involving chaotic 
excitation. In åbrillation, the pumping function of the heart is almost completely 
lost. Ventricular åbrillation can cause sudden cardiac death, whereas atrial åbrilla-
tion can cause cardiogenic cerebral infarction due to thrombi.

1.4.1  Maze Procedure

The Maze procedure involves the surgical creation of lesions through incision and 
sutures to block the pathway of abnormal excitation in atrial åbrillation. Variations 
of the Maze procedure include electrical isolation of the pulmonary vein through an 
incision (pulmonary vein isolation, PVI), resection, or preservation of the left or 
right atrial appendage, which is at high risk for thrombosis, and combination with 
catheter ablation [6, 7].

1.4.2  Catheter Ablation

During catheter ablation, a percutaneous ablation catheter is introduced into the 
heart, and lesions are formed to block the pathway of abnormal excitation in the 
myocardial tissue by radiofrequency energization and cryocoagulation. Catheter 
ablation has been widely used in recent years, especially for the treatment of atrial 
åbrillation. Pulmonary vein isolation, which electrically isolates the pulmonary 
vein via ablation, is effective for atrial åbrillation, and technological innovations for 
efåcient PVI (e.g., cryoballoons) are underway [8].

1.4.3  Stimulation Device Implantation

Stimulation devices are implanted in patients with severe arrhythmias to control the 
heart rhythm through electrical stimulation. Types of stimulation include pacemaker 
stimulation for bradycardia, anti-tachycardia pacing (ATP), cardioversion, 
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deåbrillation stimulation to prevent and terminate tachyarrhythmia, and cardiac 
resynchronization therapy to restore cardiac function by simultaneously pacing 
both ventricles. The CRT-D and ICD have multiple stimulation functions [9].

1.5  Cardiomyopathy

Cardiomyopathy is a cardiac disease in which the structure of the myocardium is 
altered and cardiac function is impaired. The two most common types of cardiomy-
opathies are dilated cardiomyopathy (DCM), characterized by thinning of the ven-
tricular walls and reduction of contractility, and hypertrophic cardiomyopathy 
(HCM), characterized by enlargement of the ventricles and diastolic failure. The 
decline in cardiac function is accompanied by typical heart failure symptoms, such 
as palpitations, shortness of breath, swelling, and fatigue. There is also a risk of 
developing fatal or serious arrhythmias, as described above.

1.5.1  Surgical Left Ventricular Reconstruction

It involves surgical resection and suturing of the left ventricular wall to shape the 
left ventricle and reduce the left ventricular volume for improving cardiac function. 
Due to its highly invasive nature and uncertain therapeutic effects, the number of 
eligible patients for this surgery is limited [10].

1.6  Severe Heart Failure

Heart failure (HF) is not a speciåc cardiac disease, but rather a condition in which 
the pumping function of the heart is impaired, impairing blood æow to organs 
throughout the body. Heart failure is a major cause of death and becomes more seri-
ous with the concurrent progression of one or more of the aforementioned cardiac 
diseases.

1.6.1  Heart Transplantation

Indications for heart transplantation include dilated and hypertrophic cardiomyopa-
thy, ischemic heart disease, and other severe cardiac conditions where the patient’s 
life cannot be saved or prolonged by conventional therapies. After the recipient’s 
heart is removed under artiåcial heart-lung control, a donor’s heart, which meets the 
matching criteria, is removed and anastomosed to the recipient’s blood vessels. 
Recipients must be treated with immunosuppressive therapy to suppress organ 
rejection following heart transplantation.
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1.6.2  Left Ventricular Assist Device (LVAD) Implantation

LVADs are implanted to assist with signiåcantly reduced cardiac function in patients 
waiting for heart transplantation [11]. The LVAD assists in pumping of blood from 
the left ventricle to the aorta. There are two types of LVADs: extracorporeal and 
implantable.

2  Application of ML Methods in Cardiac Imaging

This section describes the major diagnostic imaging modalities for cardiac diseases 
and the application of recent ML methods, mainly focusing on deep learning (DL) 
methods, to the imaging data.

2.1  Echocardiography

Echocardiography (ECHO) is an essential evaluation modality for diagnosing car-
diac diseases. Compared to other modalities, such as CT and MRI, ultrasound (US) 
imaging has the advantage of being small, portable, and real-time. It enables rapid 
assessment of structure, function, and hemodynamics and provides important infor-
mation for the initial diagnosis of cardiac diseases. Although B-mode US images 
include inherent speckle noise, the application of speckle tracking ECHO, a strain 
imaging technique for the evaluation of cardiac function in several cardiac diseases, 
has evolved in recent years [12].

ECHO involves transesophageal echocardiography (TEE), intracardiac echocar-
diography (ICE), and intravascular US (IVUS), in addition to the most common 
modality, which is transthoracic echocardiography (TTE). Recently, 3D TTE, in 
addition to 2D TTE, has also been used [13, 14].

2.1.1  Transthoracic and Transesophageal Echocardiography (TTE/TEE)

TTE is the most widely used US imaging modality for assessing structural and 
functional cardiovascular abnormalities. TTE involves the use of an US probe 
applied externally to the chest wall. For TEE, an endoscopic US probe is inserted 
through the mouth into the esophagus. TEE provides clearer images of the upper 
chambers than TTE but requires conscious sedation of patients.

In a TTE examination, a sonographer measures several parameters related to the 
structure and function of the chambers, valves, and aorta. ML has the potential to 
make TTE and TEE examinations more efåcient and operator independent. For 
example, automated-view classiåcation has the potential to help non-experts prop-
erly position the US probe and measure US images with sufåcient image quality for 
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Table 1 Summary of machine learning approaches for echocardiography

Type Year First author Purpose Method

TTE/
TEE

2018 Zhang EDV/ESV/EF evaluation (comparison 
with manual)

U-net
2019 Leclerc U-net

2019 Miyoshi CNN
2015 Medvedofsky Philips heart model

2017 Medvedofsky
2018 Barletta EDV/ESV/EF evaluation (comparison 

with manual)2018 Levy

2019 Wu
2015 Gao View classiåcation CNN
2018 Madani

2018 Zhang
2019 Ostvik

IVUS 2015 Gao Detection (lumen and MA border) Unsupervised 
clustering

2017 Su Detection (lumen and MA border) Autoencoder
2018 Sofan Detection (calciåcation) CNN w/ResNet101
2018 Kim Segmentation (CA) U-net

2018 Yang Segmentation (lumen, media vessel wall) U-net
2019 Lo Vercio Segmentation (vessel wall) SVM, RF
2019 Ko Segmentation FCNN w/transfer 

learning

SVM support vector machine, RF random forest, FCNN fully convolutional neural network, CA 
coronary artery, MA media-adventitia

accurate assessment. In addition, view classiåcation can be used to improve the 
efåciency of post-examination reviews [15–18].

Left ventricular measurements, particularly the end-diastolic and end-systolic vol-
umes (EDV and ESV, respectively) and ejection fraction (EF), are important parameters 
for the assessment of cardiac function [19]. Recent studies developed automatic mea-
surements of these parameters based on the automatic segmentation of the left ventricu-
lar chamber region in US images and evaluated the accuracy in comparison with 
criterion measurements based on manual interpretation of TTE or cardiac magnetic 
resonance (CMR) images (Table 1). In most of these studies, CNN was adopted as the 
segmentation model. There is also a trial report in which CNN was used for the direct 
estimation of EF from two US images without image segmentation [20].

2.1.2  Intracardiac Echocardiography (ICE) and Intravascular 
Ultrasound (IVUS)

For ICE, an ICE catheter with a US probe at its tip is inserted into the patient’s vas-
culature and navigated into the heart chambers. The 2D B-mode image of the ICE 
catheter enables direct visualization of the myocardial wall, surrounding tissue, and 
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instrument; thus, it can be used for visualization during percutaneous intervention 
procedures in the chambers, such as trans-septal intervention and catheter ablation 
of atrial and ventricular tachyarrhythmias. On the other hand, ICE during interven-
tion requires substantial operator expertise. Currently, there are few studies on ML 
applications to ICE.

For IVUS, an IVUS catheter with a miniaturized US probe at its distal end is 
inserted into the patient’s vasculature. IVUS enables the assessment of the vessel 
walls, which are difåcult to assess using conventional angiography. IVUS is a 
powerful tool, particularly in PCI, for the quantitative and qualitative evaluation 
of atherosclerosis and evaluation of implanted coronary stents. ML models for 
automatic tissue classiåcation (TC) for the assessment of atheromatous plaque 
and calciåcation have been developed for IVUS image analysis. In addition to 
conventional ML approaches based on the combination of feature extraction and 
classiåers, such as SVM and random forest [21], several recent studies have 
adopted CNN as the ML model [22–26]. Another major application of ML for 
IVUS interpretation is the segmentation of anatomical components, especially 
segmenting the arterial and media-adventitial (MA) walls [15, 27]. There is a 
publicly available IVUS dataset [28].

2.2  Cardiac Computed Tomography

With recent rapid advances in technology such as ECG-gated imaging, dual X-ray 
sources, and wide multidetector, cardiac CT is currently an important measurement 
modality for cardiac diseases. There are two major roles: structural and functional 
assessment of the coronary arteries and assessment of structural heart diseases 
(Table 2).

2.2.1  Coronary CT Angiography (CTA)

The most popular application of cardiac CT is the assessment of the coronary arter-
ies. With the improvement in CT image quality, it is possible to contrast coronary 
arteries by CT angiography (CTA) using an iodine contrast agent, instead of con-
ventional invasive coronary angiography (ICA). Coronary CTA is expected to be 
used for the screening of incident acute coronary syndrome [29], with the assess-
ment of luminal stenosis and atherosclerotic plaques. Moreover, CT fractional æow 
reserve (FFR-CT), a recent technology that allows non-invasive functional assess-
ment of the coronary arteries, has emerged and been approved by the FDA [30–33]. 
Instead of conventional invasive FFR measurement using a pressure wire, FFR-CT 
allows the assessment of the signiåcance of coronary artery lesions in CAD.  In 
addition to coronary CTA assessment, CAC scoring (Agatston CAC score) [34] via 
non-contrast cardiac CT is also performed to assess the signiåcance of CAD [35].
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Table 2 Summary of machine learning approaches for cardiac CT

Target Year
First 
author Purpose Method

Chamber 2017 Shahzad Segmentation 3D U-net
2018 Xu

2019 Ye
CA 
(non-contrast)

2017 Lessmann CAC scoring Two consecutive CNN
2015 Wolterink Randomized tree classiåer
2019 Martin ResNet CNN
2021 Zeleznik U-net

CA (CTA) 2019 Wolterink Centerline 
extraction

3D dilated CNN

2016 Merkow Lumen 
segmentation

CNN

2019 Shen CNN
2019 Wolterink CA boundary 

detection
Graph CNN

2019 Zreik Stenosis detection Multitask recurrent CNN
2019 Hong M-net-based CNN
2016 Itu FFR-CT Feature extraction and fully connected NN
2020 Zreik Unsupervised ML
2021 Fossan Simpliåed physics based model and 

fully connected NN

CA coronary artery, CTA computed tomography angiography, CAC coronary artery calciåcation

2.2.2  Assessment of Structural Cardiac Diseases

Cardiac CT is useful not only for coronary artery assessment but also for the assess-
ment of other structural cardiac diseases. With the increase in percutaneous inter-
ventions, structural assessments using cardiac CT are expanding. For example, 
assessment of valve anatomy, including regurgitation, is useful in percutaneous 
valve replacement and valvuloplasty interventions [36–40].

2.2.3  Application of ML Methods

While ML has recently been applied in all aspects of CT imaging, including acqui-
sition, reconstruction, and analysis, ML in cardiac CT has been predominantly used 
for the analysis of patient-speciåc risk assessment.
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2.3  Cardiac Magnetic Resonance (CMR)

Compared to other imaging methods, CMR has the advantage of a better signal-to- 
noise ratio, higher spatial resolution, and the ability to obtain images in any cardiac 
plane. CMR also enables æow assessment using phase-contrast velocity mapping. It 
provides additional information when the assessment of coronary artery and valvu-
lar diseases using ECHO, CT, and PET/SPECT is inconclusive [41]. However, 
CMR has the challenges of long measurement time.

2.3.1  Myocardial Tissue Characterization

An important diagnosis realized by CMR imaging is myocardial tissue characteriza-
tion using T1 and T2 mapping. Characteristic T1, T2, and T2* magnetization relax-
ation times enable the differentiation of normal tissue from myocardial interstitial 
åbrosis and myocardium with iron deposits. Contrast T1 mapping before and after 
gadolinium contrast use enables the assessment of diffuse interstitial åbrosis [42, 
43]. CMR with late gadolinium enhancement (LGE) enables noninvasive visualiza-
tion of myocardial scars with replacement åbrosis [44], which has been assessed 
only by invasive biopsies and autopsies.

2.3.2  Application of ML Methods

Although new acquisition sequences have been investigated to speed up CMR 
[45–47], which is a major challenge in CMR, the image reconstruction process has 
been a bottleneck. In recent years, several methods have been proposed to speed up 
CMR by introducing ML and compressed sensing (CS) techniques for acceleration 
of the image reconstruction process [48, 49]. ML methods have also been studied 
for CMR analysis to better assess ventricular function [50–52] and myocardial tis-
sue characterization [53–57].

2.4  Cardiac Nuclear Imaging

Single-photon emission computed tomography (SPECT) and positron emission 
tomography (PET) are nuclear medicine imaging modalities used for the assess-
ment of myocardial perfusion and severity of CAD. Although SPECT is a validated 
and widely available modality, PET is a relatively novel technique. PET provides a 
higher spatial resolution than SPECT, but the signal-to-noise ratio is limited, and the 
spatial resolution is not as high as that of other cardiac imaging modalities. For both 
SPECT and PET imaging, a radiopharmaceutical is injected into the patients. By 
detecting emitted radiation from the radiopharmaceutical, healthy myocardium can 
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be differentiated from ischemic myocardium. Filtered-back projection (FBP) is the 
most basic image reconstruction method for these nuclear medicine images.

2.4.1  Application of ML Methods

In SPECT/PET, ML methods are applied in the image reconstruction process to 
improve the image quality. Recently, end-to-end image reconstruction estimating an 
image directly from raw measurement data without conventional FBP or iterative 
reconstruction methods has been studied [58, 59]. Moreover, ML-based correction 
methods for image degradation caused by attenuation of positron emission [60, 61] 
and motion of patients [62] have also been studied.

3  Conclusion

Major cardiac diseases and procedures were reviewed. Further, recent representa-
tive imaging modalities used for the quantitative diagnosis of these diseases and the 
application of recent ML methods to each of them were introduced. In the future, 
further applications of AI technologies are expected, such as the discovery of new 
risk stratiåcation factors based on measurement results, as seen in radiomics 
research, and advanced navigation in robotic surgery, to realize less invasive and 
more effective surgeries.
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1  Introduction

Orthopedics mainly deals with processing and assembly of hard tissue (i.e., 
bone). Unlike soft tissue surgery, its surgical planning and execution are rela-
tively similar to design and manufacturing of industrial materials, and thus the 
framework of computer- aided design and manufacturing (CAD/CAM) in indus-
trial technology has been naturally applied to orthopedic surgery since the early 
days of computer- assisted surgery (CAS) [1–4]. Orthopedics has been one of 
important application areas in surgical robotics, which is regarded as a part of 
the surgical CAD/CAM framework [1, 4]. While the da Vinci system for soft 
tissue surgery is currently the most common surgical robot, orthopedic surgical 
robots have recently become increasingly popular in clinical practice [5, 6]. 
First question is how AI can bring a paradigm shift of the conventional surgical 
CAD/CAM framework in orthopedics.

Another notable framework is the concept of “surgery as a closed-loop pro-
cess” [7, 8], which is a long-term feedback loop of making the best use of accu-
mulated surgical data to improve the models and methods for future surgery. 
This framework may have not been widely spread, but it can be regarded as a 
precursor of the recently-emerged “surgical data science (SDS)” framework [9, 
10]. While the current most active area of SDS is analysis of intraoperative sur-
gical video data such as endoscopic/laparoscopic/æuoroscopic video data, AI 
surgery should include optimization of therapeutic selection/planning/execution 
and pre−/postoperative rehabilitation based on diagnosis and prognosis predic-
tion. Therefore, analysis of pre- and postoperative data and non-video intraop-
erative data is important as well to understand and model the surgery including 
preoperative patient conditions and the outcome of surgery. Second question is 
how AI can contribute to SDS in orthopedics vice versa.

AI will greatly enhance the abovementioned two computer-aided surgery 
frameworks and unify them to facilitate digital transformation of the whole pro-
cess of orthopedic surgery, which will include diagnosis such as osteoarthritis 
(OA) grading, decision about the timing of surgery, pre- and postoperative reha-
bilitation, and so on, in addition to surgical planning and execution. Regarding 
the above-raised two questions, the answers could be as follows. AI will opti-
mize and automate the CAD/CAM framework through inference based on com-
prehensive patient and therapeutic models for the årst question. These models 
will be learned from the database of the whole process of orthopedic surgery 
constructed by the SDS framework, which will be progressively improved in a 
closed-loop manner, for the second question. Toward the comprehensive patient 
and therapeutic modeling, we investigate two aspects of modeling: (1) patient 
modeling and (2) surgery/therapeutic modeling in total hip arthroplasty (THA) 
as a typical orthopedic surgery in this chapter.
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2  Patient Modeling by AI

The årst step of surgical CAD/CAM in orthopedics is reconstruction of the patient- 
speciåc musculoskeletal anatomy. AI, for example, U-Net [11], has dramatically 
improved the performance of automated segmentation from medical images. 
Automated segmentation of the individual bones is now considered to be ready for 
practical use in both accuracy and speed for even heavily diseased cases. 
Segmentation of individual muscles as deåned in anatomy books has become pos-
sible in much higher accuracy by AI [12] than conventional methods [13] (Fig. 1). 
Once segmentation is completed, patient-speciåc tissue properties such as bone 
mineral density (BMD) [14] and muscle fatty degeneration in muscles [15] are esti-
mated from CT. Further, cartilage and ligament segmentation from MRI and CT is 
becoming possible.

The CAD/CAM framework is typically coupled with ånite element analysis 
(FEA) and other mechanical analyses [16, 17]. In orthopedic applications, biome-
chanical analysis of musculoskeletal structures and tissues, e.g., FEA of bone/carti-
lage tissues and dynamic biomechanical analysis of gait and other motions, is 
combined. One of the important roles of AI is to drastically facilitate practical use 
of patient-speciåc anatomy obtained from medical images in biomechanical analy-
sis, that is, patient-speciåc biomechanical simulations will be available in clinical 
routine. More importantly, AI will enable all automatically segmented/annotated 
patient and surgical data to be increasingly accumulated in the database, including 
pre-and postoperative patient anatomy from medical images, musculoskeletal func-
tion assessment data, and biomechanical simulation data, as well as preoperative 
planning and intraoperatively acquired data. Further, systematic and automated 
accumulation of patient follow-up data can be integrated to construct comprehen-
sive patient and surgical database and realize the concept of “surgery as a closed- 
loop process” [7, 8]. These database accumulation processes will lead to development 
of AI surgery. Therefore, underlying AIs accelerate the SDS framework, while the 
SDS framework combined with underlying AIs provides higher-level training data 
for comprehensive AIs.

One opportunity of applications of automatically accumulated comprehensive 
database is development of AI for highly capable X-ray image recognition, which is 
particularly useful for orthopedic surgery and diagnosis. In the computer vision 
research åeld, depth maps obtained from depth sensors can be regarded as ground 
truth training data for AI which predicts depth maps from 2D monocular photo 
images even though those from the depth sensors may be somewhat noisy [18, 19]. 
Similarly, original CT data and their automatically segmented data are naturally 
utilized as ground truth training data for AI of 2D X-ray image analysis. In princi-
ple, X-ray images can be viewed as 2D projections of CT. If the patient-wise paired 
dataset of X-ray images and CT data, which is common in orthopedic patients, is 
available, automatically segmented/annotated 3D information from CT data can be 
used as ground truth for training of X-ray image recognition.
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a

b

Fig. 1 Musculoskeletal segmentation of the hip and thigh from CT using Bayesian U-Net [12]. (a) 
Schematic diagram of segmentation and uncertainty estimation. The skin surface is årst segmented 
by the deterministic U-Net. Subsequently, the individual muscles are segmented, and the segmen-
tation uncertainty is predicted by Bayesian U-Net. (b) Visualization of the predicted labels for a 
representative patient. The result with U-Net shows distinctly more accurate segmentation near the 
boundary of the muscles. The region of interest in the slice visualization at the bottom corresponds 
to the black dotted line in the left-most column. (Copyright © 2020, IEEE)
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Fig. 2 BMD prediction from a plane X-ray image. Relationships between the intensities of the 
X-ray image, decomposed digitally reconstructed radiograph (DRR), and BMD values in 200 
patient datasets [21]. (a) Paired (registered) dataset of X-ray image and decomposed DRR of the 
proximal femur. (b) Scatter plots showing the correlation of the average intensity of X-ray images, 
predicted BMD from quantitative CT (QCT) DRR, and predicted BMD from the synthesized 
(decomposed) DRR with DXA-measured BMD and QCT-measured BMD.  Pearson correlation 
coefåcient (PCC) was larger than 0.85 between the predicted BMD and the ground-truth BMD of 
DXA and QCT. (c) Proximal femur regions-of-interest (ROIs) of four representative cases. ROIs 
#2 and #3 have similar X-ray intensity but signiåcantly different BMD, whereas ROIs #4 and #5 
have similar BMD but signiåcantly different X-ray intensity. The synthesized DRRs correctly 
recovered the intensity of QCT DRR, regardless of the intensity of the input X-ray image. 
(Copyright © 2022, The Author(s), under exclusive license to Springer Nature Switzerland AG)

Regarding the bones, accurately registered paired dataset of X-ray image and 
segmented CT is obtained using automated 2D-3D registration [20]. One illustrative 
example is the prediction of bone mineral density (BMD) estimates of particular 
bone regions, which are accurately measured from segmented CT data, from a plane 
X-ray image [21]. The results show good correlation with DXA (dual-energy X-ray 
absorptiometry), which is regarded as gold standard of BMD measurement (Fig. 2). 
Another promising application is 3D shape reconstruction of the bones from X-ray 
images [22]. Regarding the muscles, muscle mass estimation of individual muscles 
from a plane X-ray image will be possible from even unpaired dataset of muscle- 
segmented CT data and X-ray images [23].

Regarding the patient modeling, pathology should be modeled in addition to 
anatomy. AI for osteoarthritis (OA) detection and severity grading has been 
intensively studied although these are mostly for total knee arthroplasty (TKA) 
[24–26]. In addition, AI for prediction on whether the patient undergoes TKA 
has also been investigated. OA diagnosis is usually based on bones and carti-
lages. In order to evaluate the joint functions, the evaluation of muscles is 
important. Muscle atrophy and fatty degeneration associated with hip OA pro-
gression were investigated based on manual traces of individual muscles from 
CT [15]. By using AI-based automated muscle segmentation from CT, muscle 
atrophy and fatty degeneration will be able to be modeled automatically. Surgery 
and rehabilitation can be integrated to optimize therapy of OA, and muscle eval-
uations will play an important role for it.
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3  Surgery/Therapeutic Modeling by AI

AI is expected to optimize and automate the CAD/CAM framework. The CAD part 
in the surgery would correspond to preoperative planning. Automated preoperative 
planning has been studied for THA surgery. Although one of obstacles against the 
automation was preoperative patient anatomy modeling from medical images before 
AI has become commonly used, patient anatomy is now accurately and automati-
cally reconstructed from medical images by AI-based segmentation.

Regarding preoperative planning of THA surgery, the problem can be viewed as 
prediction of the postoperative patient anatomy and joint functions, X, after THA 
surgery which involves the selection and placement of the implants as well as design 
of osteotomy lines, given the preoperative patient data, D, which include anatomy 
data as well as clinical data, metadata, and so on. One possibility of mathematical 
modeling for optimal THA planning which predicts the optimal postoperative 
patient anatomy and joint functions, Xopt, will be maximum a posterior (MAP) esti-
mation [27–30]. Assuming that P(X), P(X| D), and P(D| X) are the prior probability 
of X, the posterior probability of X given D, and the conditional probability (likeli-
hood) of D given X, respectively, prediction of Xopt is formulated as

 X P X D P X P D Xopt
X X

� � � � � �� �argmax | argmax |( )  

according to the Bayesian theorem, P(X| D) ∝ P(X)P(D| X).
An intuitive explanation of the above idea is shown in Fig. 3, which is a simpli-

åed version of THA planning. In Fig. 3, automated planning of the cup, which is 
implant placed in the acetabulum of the pelvis (the socket part of the ball-socket 
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Fig. 3  Mathematical formulation of automated preoperative planning of acetabular cup alignment
as Bayesian estimation [27,  29]. Preferable spatial relation between the patient pelvis and cup,  X,
is encoded in a statistical shape model (SSM), which provides a prior probability distribution  P(X).
Given patient pelvis shape  D, the problem is formulated as ånding  X  maximizing  P(X) ×  P(D|  X).
https://pezeshkibook.comprovide a prior probability distribution,  P(X), in Bayes theorem, and
P(X) is deåned a dimensionality-reduced subspace in the whole shape space. Through analysis of
sensory  data  generation  process, a  likelihood  in  Bayes  theorem  is  modeled  (e.g., as  additive
Gaussian noise)
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Fig. 4  System overview of automated optimization of preoperative planning for combined pelvic 
and  femoral  implants  [30]. The  SSMs  for  single-implant  planning  (acetabular cup  and  femoral 
stem) [28,  29] are combined with statistical models of hip joint functions to derive the MAP for-
mulation for automated optimization method of THA planning. (Copyright © 2013, IEEE)

joint), is addressed. Probability distribution  P(X) represents the variability of  X, that
is, the pelvis shape and the placed cup implant on it (with the appropriate size and
position) among the different patients, and is modeled by the SDS framework using
past surgical data.  P(X|  D) represents the variability of  X, given the measured pelvis
shape  data,  D,  which  may  be  perturbated  by  some  noise.  The  variability  of  X  in
P(X|  D) will become (much) smaller than that in  P(X).  Xopt  which maximizes  P(X|  D)
will be regarded as the most probable  X  when  D  is given. The size, position, and
https://pezeshkibook.comcup implant with respect to the pelvis are determined 
from  Xopt.  X can be extended from the combined pelvis and cup to the combined 
pelvis, femurs,and, all implants needed for THA.
   One question is whether the most probable postoperative patient anatomy can 
be regarded as the optimal plan. Due to regression effects, it is expected that the 
prediction will not be affected by outlier plans in the training dataset. Therefore,
the resulted prediction will provide a typical postoperative anatomy given pre-
operative  patient  data,  in  which  implicit  clinical  knowledge  is  effectively 
embedded. Nevertheless, the prediction only provides an anatomically plausible 
solution from the aspect of implicit clinical knowledge. The probabilistic mod-
els  of  postoperative  joint  functions,  which  are  constructed  from  past  patient 
data, can be combined to further optimize the joint functions in the same frame-
work  while  anatomical  plausibility  is  maintained  [30]  (Fig.  4).  Recent  deep 
learning approaches [31,  32] will effectively enhance this framework to improve 
the performance in the near future.
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Fig. 5  Real image experiment of metal artifact reduction [33]. 3D renderings and axial cross sec-
tions for the real postoperative image of the patient are shown in the left-most column. The seg-
mentation  results  under  three  different  conditions  (without  artifact  reduction,  normalized  metal 
artifact  reduction  (NMAR)  method,  and  NMAR  with  reånement  U-net)  are  shown  from  the
second-left to right-most columns. The uncertainty images obtained by Bayesian U-Net segmenta-
tion are also shown in the right sides of corresponding segmentation results. The window display 
of original CT images was [−150,350] HU. Arrows indicate areas where accuracy improvements
were  observed  when  the  NMAR  method  [35]  and  reånement  U-Net  were  used.  By  combining 
reånement  U-Net,  the  artifact  reduction  was  improved  in  comparison  with  using  NMAR  only.
Note that the uncertainty became smaller as well when the artifact reduction was performed, which
shows a possibility that the uncertainty can be used to evaluate the effect of artifact reduction in the 
real CT images. (Copyright © 2020, Springer Science Business Media, LLC, part of Springer Nature)

  https://pezeshkibook.comproaches  in  preparing  the  training  dataset  of  the
postoperative patient anatomy to construct prior  P(X) for automated preoperative THA
planning.  One  is  to  combine  the  preoperative  patient  anatomy  reconstructed  from
preoperative  CT  with  preoperative  planning  data  about  implant  models, sizes,
positions, and  so  on  to  simula-tionally  reconstruct  the  postoperative  anatomy.  The
other  is  to  use  postoperative  CT  to  reconstruct  the  postoperative  patient  anatomy
including  implants.  The  former  approach  may  not  reæect  the  actual  postoperative
anatomy because the actual surgery may be dif-ferent from the preoperative plans. The
latter will reæect the actual postoperative anat-omy,  but  metal  artifacts  caused  by  the
implants  will   result   in   serious  degradation  in  postoperative  CT  images,  which
affects   the   accuracy   of   automated   segmentation.
Nevertheless, recently developed metal artifact reduction methods combined with deep
learning [33,  34] signiåcantly reduce the unwanted artifacts (Fig.  5). Future work will
include modelling of  P(X) by a large dataset of postoperative CT data. By using postop-
erative CT data at multiple time phases, musculoskeletal recovery processes of THA
patients can also be modeled [36].
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4  Summary and Integration with Robotic Surgery

In this chapter, deep learning and statistical modeling of the musculoskeletal patient
anatomy,  preoperative  planning,  and  postoperative  patient  anatomy  in  orthopedic
surgery,  especially  THA,  have  been  addressed.  Fully  automated  segmentation  of
pre- and postoperative images is now sufåciently accurate for the automated model-
ing of pre- and postoperative anatomical structures including muscles, bones, and
implants from a large number of the patient image data. Therefore, automated mod-
eling of preoperative planning and postoperative patient anatomy is facilitated.
  We mainly addressed optimization and automation of the CAD part of the surgi-
cal  CAD/CAM  framework  by  the  SDS  framework,  which  has  been  drastically
enhanced by AI. We did not address the intraoperative modeling in the CAM part.
The Robodoc system for THA and TKA, which is a pre-programmed robot, was one
of  the  earliest  surgical  robotic  systems  although  the  da Vinci  system,  which  is  a
master-slave type robot, is currently much more popular. Recently, the Mako system
for THA and TKA is becoming popular. While the Mako system incorporates both
pre-programming and master-slave aspects, it basically guides the surgeons so as to
accurately  execute  the  preoperative  plan.  Therefore,  the  preoperative  planning  is
particularly important, and its optimality will enhance the value of precise robotic
surgery.  The  surgical  CAD/CAM  and  SDS  frameworks  will  be  effectively  com-
bined by AI and will lead to better patient care in the future.
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Abstract Intraocular microsurgery requires surgical skills at the limits of human 
physiological capability. These minimally invasive procedures require staggering 
accuracy, precision, and steadiness that typical humans are not able to achieve. 
Combined with advanced imaging, robotics has become a promising strategy for 
advancing the åeld of intraocular microsurgery. Artiåcial intelligence, especially 
machine learning, is gradually advancing the practice of surgery with tremendous 
achievements in imaging, environment perception and understanding, navigation, 
and robotic assistance. Machine learning applied to intraocular robotic microsur-
gery is a relatively recent phenomenon that has the potential to revolutionize eye 
care by combining human strengths with computer and sensor-based technology, in 
an information-driven environment. Robotic microsurgery, augmented by artiåcial 
intelligence, has the potential to enhance a microsurgeon’s physical capabilities to 
superhuman levels, by increasing the precision, safety, efåcacy, and efåciency of 
the surgical tasks and procedures being performed. In this chapter, we analyze pres-
ent advancements in intraocular robotic microsurgery and the emergence of artiå-
cial intelligence applications as an inevitable new strategy for expanding retinal 
microsurgical techniques into domains that have heretofore been inaccessible fron-
tiers for unassisted human surgeons.
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1  Introduction

At present there is no longer a question of whether artiåcial intelligence (AI) will 
revolutionize the practice of modern surgery. There are now numerous substantial 
advancements in practice that utilize AI for diagnosis, imaging, tool navigation, 
surgical instrument utilization, as well as interfacing with robotics [1]. Artiåcial 
intelligence and more speciåcally machine learning are integrated into surgical 
robotic platforms for environment perception and understanding, real-time deci-
sion- making, and to increase precision, safety, and efåciency of the surgical tasks 
performed. Moreover, advanced machine learning techniques and algorithms (learn-
ing from demonstration, reinforcement learning, etc.) can increase the level of 
robotic autonomy for ever more complicated tasks notably when considering inter-
actions with complex and dynamic surgical environments.

Eye surgery (or ophthalmic surgery) is a type of microsurgery performed on the 
eye by an ophthalmic surgeon using miniaturized instruments and an operative ste-
reomicroscope, for åne and highly precise tasks, requiring specialized skills and 
capabilities only acquired through extensive training. Following the current trend in 
modern surgery, machine learning has become an important tool in advancing eye 
surgery by extracting data to evaluate, teach, and support the clinician during clini-
cal tasks [2]. Machine learning has been used to increase the accuracy in diagnosis 
of ophthalmic disease like diabetic retinopathy [3–5], age-related macular degen-
eration [6, 7], retinopathy of prematurity [8], glaucoma [9], and ocular oncology 
[10]. Ophthalmic surgical education has beneåtted from introducing advanced 
AI-based and virtual reality technologies into surgical training [11–14], surgical 
evaluation [15], and now intraoperative guidance [16]. Similarly, cataract surgery, 
the most performed surgical procedure [2], has proven amendable to machine learn-
ing techniques as applied to diagnosis and grading [15], preoperative planning [17, 
18], and surgical management [19–21].

Vitreoretinal surgery may be the most technically challenging eye surgery [22] 
and deals with the surgical treatment of retinal and posterior segment diseases. 
Following the trend in microsurgery [23], robotic assistance, enhanced by artiåcial 
intelligence and combined with advanced imaging, has the potential to fundamen-
tally change and advance the åeld of intraocular surgery. Still in its early stages, 
robotic retinal surgery has been cautiously introduced into the operating room and 
has been successfully evaluated in a limited number of clinical trials [24–26]. 
Nonetheless, owing to its demonstrated capabilities, robotic intraocular microsur-
gery, augmented with artiåcial intelligence, has the potential to assist the surgeon 
and provide superhuman physical capabilities, enabling unprecedented as well as 
safer surgical care for patients.

This chapter is organized as follows. Section 2 reviews relevant intraocular surgi-
cal procedures, challenges associated with human factors, and the motivation for 
robotic assistance and artiåcial intelligence in intraocular retinal microsurgery. 
Section 3 discusses current approaches utilizing robotic systems and sensorized 
instruments for intraocular surgery. Sections 4 and 5 review the artiåcial 
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intelligence techniques employed in intraocular robotic microsurgery for percep-
tion, system modeling, and control. Finally, Sect. 6 includes a forward-looking dis-
cussion on future directions as well as concluding remarks.

2  Need for Robotic Assistance and Artiåcial Intelligence 
in Intraocular Microsurgery

The clinical discipline of ophthalmic surgery consists of delicate extraocular and 
intraocular microsurgical procedures. Many extraocular procedures occur on the 
millimeter scale and are routinely performed freehand. Among the exceptions to this 
are the demanding requirements of refractive and rehabilitative cornea surgery—
that may utilize automated robotic lasers, optical coherence tomography (OCT) 
image guidance, and depth-guided incisions. Intraocular surgery is characterized by 
further exacting, micrometer-scale requirements. It is performed to strategically 
alter internal eye anatomy to treat disease and maximize vision. Intraocular proce-
dures require a high-powered stereo operating microscope as well as additional 
optics, lighting, tissue staining, high precision microsurgical instruments, and highly 
trained microsurgeons. Even with these requirements met, the globe interior remains 
a constrained and high-risk workspace. Some portions of the interior eye are poorly 
visualized and difåcult to access. Internal tissues such as the retina are fragile, 
unforgiving, and with limited ability to regenerate. Importantly, present and emerg-
ing surgical procedures may contain essential steps that require dexterity, tremor 
control, and visualization that may be beyond unassisted human capabilities.

The eye consists of a number of clinically relevant tissues including but not lim-
ited to the cornea, lens, trabecular meshwork, and retina [26]. These serve as surgi-
cal targets for the major intraocular surgical specialty areas in ophthalmology, 
namely, cornea, cataract, glaucoma, and vitreoretinal surgery, respectively. Each 
specialty area presents unique robotic, artiåcial intelligence, and machine learning 
opportunities, e.g., precise corneal incisions in corneal refractive and transplant sur-
gery, semi-automation of frequently performed surgical steps in cataract surgery, 
and enhanced precision in stent and drain placement in glaucoma surgery. It has 
however been the many challenges of retinal microsurgery that have generated the 
greatest recent interest from the robotics community.

Retinal microsurgery routinely requires maneuvers directed at single micron 
scale targets (some of which are optically transparent to the operating surgeon’s eye), 
by surgeons with 50–200 micrometers of physiological hand tremor. Moreover, the 
retina can be torn/injured with single millinewton forces that are beneath human 
tactile perception [27]. Once injured the retina and vision may be irreversibly dam-
aged. Recent developments in retinal microsurgery have introduced increasingly 
advanced, challenging, and presently higher-risk procedures with potential therapeu-
tic beneåt. These include but are not limited to subretinal injections, peeling of inter-
nal limiting membrane, and endovascular retinal surgery. Of particular interest in 
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retinal surgery is the high level of reliance on preoperative, intraoperative, and post-
operative imaging to plan, execute, and evaluate retinal surgery. Fortuitously, retinal 
surgery is conducted in a high-resolution video-accessible environment. Taken col-
lectively these and other factors make retinal surgery an ideal challenge for artiåcial 
intelligence, machine learning, and stepwise advances toward robotic automation.

Algorithms that enable robots to assist surgeons by performing repetitive, ultra- 
high precision navigational maneuvers, or procedures requiring prolonged endur-
ance are particularly amenable to robotic assistance, as are tasks requiring target 
recognition. Applications that interpret retinal images and anatomy during the 
course of surgery (tissue tracking) are well suited to the high-resolution imaging 
environment that characterizes operative retinal surgery. Machine learning, deep 
learning, and deep learning recurrent neural networks are presently being applied to 
preoperative planning and intraoperative tool guidance, while at the same time pre-
dictive and seemingly cognitive capabilities are evolving that would be anticipated 
to be of greatest utility intraoperatively. When fully integrated with the human 
machine interface decreased intra- and inter-surgeon procedure variability, enhanced 
precision, enhanced task capabilities, reduced error rates, reduced costs, reduced 
fatigue, improved ergonomics, and the freeing of a surgeon to focus on the “big- 
picture” during surgery, all are expected to lead to improved surgical outcomes and 
patient vision. Such advances in ophthalmic microsurgery would be broadly trans-
lational to non-ophthalmic minimally invasive surgical applications.

3  Robotic Systems and Sensorized Instruments 
for Intraocular Microsurgery

Undoubtedly robotic assistance promises multiple beneåts for eye surgery, and 
there is a strategic role for artiåcial intelligence to enable access of robotic technol-
ogy into the ophthalmic operating room. Notable known advantages are the aug-
mentation of capability and safety and eventually efåciency to improve patient 
outcomes. The integration of various “smart instruments” could further extend 
robotic functionality, enhance safety, and improve surgical performance. Given cur-
rent areas of emphasis, force and distance sensing are proposed to be of paramount 
importance in providing enhanced safety protecting from inadvertent eye movement 
and to better depth control instrument navigation. This section summarizes state-of- 
the-art concepts in robotic systems and sensorized instruments for intraocular 
microsurgery. A comprehensive review is presented in [26].

3.1  Robotic Systems for Intraocular Microsurgery

In the last decades, researchers worldwide have developed numerous robotic sys-
tems for intraocular microsurgery. As shown in [24], some of the basic requirements 
for these robotic systems include (1) requirements that they be lightweight and 
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compliant, to allow safe interactions with patients and clinicians; (2) be easily oper-
ated by clinical personnel; (3) be easy to attach to the surgical table or åt into the 
user’s hand; (4) be interfaced with a visualization system having the necessary reso-
lution for microsurgical tasks; (5) be guaranteed safe for instrument manipulation 
outside and inside the eye via hardware and software constraints; and (6) ensure 
safety by reacting properly to involuntary patient movements.Currently, there are 
three main approaches related to robotic system control:

(1) telemanipulation, the systems provide tremor åltering and motion scaling; (2) 
comanipulation (“co-bots”), the systems support tremor åltering, but lack motion 
scaling; and (3) handheld devices, which have minimal impact on the workæow. A 
fourth concept that may become applicable in minimally invasive approaches con-
sists of magnetically controlled microrobots [28, 29]. Some advantages and disad-
vantages of these approaches are summarized in [24].

Telemanipulation systems: In the telemanipulation approach, the motion control-
ler (leader system) is operated by the surgeon, while the instruments are attached to 
a separate robotic manipulator (follower system) placed next to the patient. The 
surgeon-operated system can be positioned either adjacent to the surgical site or at 
a separate console, and a computer translates the commands from the motion con-
troller to the following manipulator [30–34]. Telemanipulation robots provide 
tremor åltering and the ability to position an instrument at a predeåned position for 
prolonged periods of time. The main advantages of a telemanipulation robot include 
variable motion scaling and the possibility to provide (semi) automation of proce-
dures, making this design particularly well suited for a wide range of both static and 
dynamic tasks. Among the many telemanipulation systems, the PRECEYES 
Surgical System [33] and the Intraocular Robotic Interventional Surgical System 
(IRISS) [34] are two relevant examples.

Hand-Over-Hand or Comanipulation Systems In the comanipulation approach, a 
robotic manipulator and human operator hold and simultaneously control an instru-
ment. The manipulator greatly dampens movements, thereby limiting tremor during 
a surgical maneuver. Moreover, such systems can maintain a stable position inde-
pendent of the surgeon’s grip, further extending the physiologic reach of a surgeon. 
Two relevant examples in this category are the Johns Hopkins Steady-Hand Eye 
Robot [35] and the KU Leuven robot [36]. The stability and possibility to maintain 
a static position are particularly useful during slow and careful injection of drugs, 
e.g., during retinal vein cannulation [37–39] and subretinal injections.

Handheld, Smart Surgical Tools In this approach, the smart surgical tools are 
manually operated by the surgeons, augmenting their surgical capabilities as deåned 
by the speciåc tool’s function [40–42] by, e.g., limiting hand tremor, providing 
micrometer precision and accuracy, as well as by scaling motion and forces. In this 
category, a relevant example is Micron [41], a handheld micromanipulator devel-
oped at the Robotics Institute, Carnegie Mellon University. Despite their intuitive-
ness, these tools are often an engineering challenge, with limited abilities to 
accommodate a wide range of instruments. Their capabilities can be extended by 
employing complex and intelligent instruments like optical tracking and “snake- 
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like” systems [43, 44]. The requirement that these devices need to be continuously 
held by the surgeon could be seen as an inherent limitation. However, safe manipu-
lation and unnecessary immobilization of the patient head are inherent beneåts for 
handheld tools.

3.2  Sensorized Instruments for Intraocular Microsurgery

As in other surgical procedures that require physical interaction with patient anat-
omy through a surgical instrument [45], during intraocular surgery excessive con-
tact forces can result in tissue damage, while insufåcient forces prevent task 
completion [46]. Speciåc maneuvers and tasks are characterized by safe and often 
narrow ranges of forces that can also act as quantitative metrics of surgical skill. 
Furthermore, real-time force data can be used to control robotic platforms or pro-
vide feedback to human operators.

Tool-Tip Forces Surgical instruments could come in contact with tissue inside the 
eye (e.g., tool-tip to retina interaction) or at the eyewall, at the sclerotomy (tool- shaft 
to sclera interaction). Tool-tip forces are difåcult to estimate by hand as the majority 
are well below human sensory thresholds [27], while scleral forces (typically an 
order of magnitude larger [47]) obscure them. Consequently, the forces at the instru-
ment tip are able to be measured with sensors embedded in the intraocular segment 
of the tool, and one possible solution is to employ åber optic sensors (FOS) [26]. 
The advantages of using FOS for sub-millimeter sensorized instruments include 
very small size (diameter 60 to 250μm) [48], high resolution, biocompatibility, ster-
ilizability, electrical immunity, etc. The majority of FOS-based sensorized instru-
ments involve FBG (Fiber Bragg Grating) sensors [49], while some employ the 
Fabry-Perot Interferometry (FPI) measurement principle [50]. Employing FBGs, 
prior work has focused on the development of pick tools [51–54], microneedles that 
could be used for vein cannulation or subretinal injection procedures [55–59], and 
micro-forceps that could be used for membrane peeling force detection [60–62].

Scleral Interaction Forces Some research [63] investigated the integration of FBG 
force sensors at the tool-tip and also into the tool shaft, outside the eye, to simulta-
neously measure forces at the retina, the sclera contact location (tool-tip insertion 
depth), and the corresponding contact force (scleral force). The information from 
such multi-function force-sensing tools could be used to augment robotic behavior 
and create an adaptive remote center-of-motion (RCM) constraint to minimize eye 
motion and potential damage on the eyewall at the sclerotomy [64–66].

Instruments with OCT for Depth Perception Optical coherence tomography 
(OCT) with its micrometer-level resolution has been accepted as intraoperative 
imaging modality for retinal surgery [26]. OCT-based sensorized tools have been 
developed to visualize retina layers [67–69], to assess the tool-tip distance to anat-
omy in real time [52], and to conduct subretinal injections at speciåc depths [70]. 
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More recently, FBG-based force sensing was combined with OCT-based distance- 
sensing in a cannulation needle [71, 72].

As mentioned above, the smart instruments, employing various sensors, can 
increase functionality, safety, and performance in robot-assisted intraocular surgery. 
Furthermore, sensorized instruments augmented with machine learning algorithms 
to predict and detect the interaction with intraocular microenvironment will be 
indispensable for assisting the robots to perform surgical steps or eventually the 
entire procedure, independently [73].

4  Perception in Intraocular Robotic Microsurgery

Generally, surgical robotics can use artiåcial intelligence techniques for (1) percep-
tion, (2) localization and mapping, (3) system modeling and control, and (4) human- 
robot interaction [1]. Considering the overlap between intraoperative guidance and 
robot localization and mapping, the most relevant beneåts of AI in intraocular 
robotic microsurgery are perception (presented in this section) and system modeling 
and control (presented in Sect. 5).

As an AI technique for surgical robotics, perception deals with instrument seg-
mentation and tracking and the interaction between surgical tools and their environ-
ment [1]. Instrument tracking in ocular microsurgery depends on the type of 
visualization: the most relevant ones are stereomicroscopy and optical coherence 
tomography [26]. Several works have employed machine learning methods to pro-
vide fast and robust solutions for instrument tracking overcoming the challenges 
related to 2D microscopy: illumination changes, cluttered background, deformable 
shape of the instrument, motion blur, shadows, etc. [2]. Among these, boosting 
methods [74], random forests [75, 76], and other described methods to update 
learned models dynamically [77] have been shown to work extremely well for 2D 
instrument pose localization. However, 2D images from a single microscope are 
insufåcient to estimate an instrument’s 6DOF (degrees of freedom) movements dur-
ing surgery, which is necessary for advanced therapies such as robotic microsurgery 
and real-time visualization, speciåcally when the needle is inside the retinal tissue. 
Traditional navigation solutions such as optical tracking or electromagnetic tracking 
are not applicable as they usually have an accuracy in the range of 200 to 1400 
micrometers, which is worse than the required precision to perform retinal surgery 
(around 10휇푚, [26]). To overcome the abovementioned challenges, Probst et al. [78] 
proposed for the årst time to use a stereomicroscope to detect and localize the instru-
ment for applications in robot-assisted retinal surgery. This method, employing con-
volutional neural networks (CNNs), achieved a precision of 100 micrometers. 
However, as shown above, intraocular surgery presents unique challenges and has 
even higher accuracy requirements that limit the stereomicroscope capability method 
in some scenarios, e.g., subretinal injection. Optical coherence tomography, which 
was originally used for the diagnosis of ophthalmic diseases because of its excellent 
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Fig. 1 OCT-based 6DOF needle pose estimation: (a) OCT scan setup for subretinal injection. 
OCT scans a cube with a resolution of 128 × 512 × 1024 pixels in 4 × 4 × 2 mm; (b) the structure 
of the microcannula and its projection; (c) the pose and position of the microcannula. (© [2022] 
IEEE. Reprinted, with permission, from [80])

resolution, has been developed to capture real-time images associated with interac-
tions between the surgical instrument and the retinal tissue. Recently OCT applica-
tions have been extended to intraoperative applications. Microscope Integrated OCT 
(MI-OCT) developed by Carl Zeiss Meditec (Lumera 700 with RESCAN 700 OCT 
engine), which was årst introduced for clinical use in 2014 [79], can share the same 
optical pathway with the ophthalmic microscope to give real-time cross-sectional 
information of the target scan area. This is an ideal imaging modality for ophthalmic 
surgery. MI-OCT imaging modality together with a proper reconstruction frame-
work enables 3D scanning of the target area intraoperatively (Fig. 1a).

Estimating the 6DOF pose of an object from an incomplete point cloud has 
drawn much attention in computer vision with numerous applications. Kehl et al. 
[81] introduced a light-weight 3D tracking with 6DOF pose estimation. However, 
their method cannot be directly applied since the iterative closest point (ICP) with 
6DOF parameters relies heavily on the initial guess from the object viewpoint fea-
tures, e.g., clustered viewpoint feature histogram (CVFH), and the geometrical fea-
ture of the needle is cylindrical and has a beveled shape at the needle tip without 
strong features (Fig. 1b). This can lead to a local optima result and may not be suit-
able for safety-critical surgical applications.

As a practical alternative, a modiåed iterative closest point to estimate the 6DOF 
pose of the needle directly from the OCT volume data was suggested by Zhou et al. 
[80] (Fig. 1). The premise of this method is that the actual dimensions of the needle 
are within the range necessary to satisfy the standard for manufacturing medical 
devices (ISO 9626:2016), typically 6.4 micrometers in diameter and 1 degree in 
bevel angle. The method consists of two main parts. The årst part is a robust needle 
segmentation method introduced to get the 3D needle point cloud in the OCT vol-
ume. Due to the infrared light source of OCT and the geometrical features of the 
needle, the segmentation result is robust to illumination variation and speck reæec-
tion. The second part is a shift-rotate ICP (SR-ICP) to estimate the 6DOF pose of 
the segmented needle point cloud. Using the geometrical features of the needle, the 
6DOF pose is reduced to a 2DOF optimization problem, which can dramatically 
decrease the chance of getting local optima. Furthermore, different from the typical 
methods which use object viewpoint features to start the initial guess, Zhou et al. 
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[82] proposed to align the CAD model tip to the visual needle tip in the OCT vol-
ume. This initial guess is very close to the global optimum. To validate these meth-
ods, a comparison of the result with brutal grid search (GS) and standard ICP was 
implemented. Several ex vivo experiments were performed on pig eyes and demon-
strated that the AI methods utilizing fundus and intraoperative OCT images are 
qualiåed in 6DOF needle pose estimation for retinal surgery applications (Fig. 1c). 
Notably, the position accuracy can be controlled to within 10 micrometers with 95% 
conådence, which meets most of the surgical requirements [82].

In addition to tracking the position and orientation of the surgical instruments, 
automatic analysis of the anatomical target area is of utmost importance to achieve 
intraoperative OCT (iOCT) supported or even eventual autonomous robotic surgery. 
This is most applicable to procedures such as subretinal injection that require access 
to sub-surface areas not visible from conventional microscopic views but beneåt 
from the analysis of iOCT B-scans. Identifying the target area and predicting the 
point of contact between the robotically controlled instrument and the anatomical 
structures from a real-time B-scan segmentation can support the appropriate control 
strategy of the robotic system by continuously monitoring the distance between the 
tool-tip and the tissue (e.g., Internal Limiting Membrane (ILM) as well as the 
Retinal Pigment Epithelium (RPE)), therefore reducing the risk of irreversible dam-
age to critical retinal cells. Retinal layer segmentation and analysis have been intro-
duced for diagnostic OCT imaging and extensively investigated by numerous works 
[83–86] in recent years. However, differences in signal power and speckle noise 
levels between diagnostic and interventional OCT and the presence of instruments 
in iOCT imaging generate a translational gap that prevents the direct integration of 
such algorithms into the surgical context. To overcome this gap, Sommersperger 
et al. [87] introduced an initial work combining the efforts of instrument identiåca-
tion and retinal layer segmentation to analyze iOCT volumes. A constraint of devel-
oping such an intraoperative pipeline for robotic setups (see Fig. 2a) is the efåcient 
volumetric data processing in real time, since advances in spiral scanning [88] and 
swept-source [89] OCT technology pose the need for efåcient processing algo-
rithms that can cope with high acquisition data rates of several GB/s. The proposed 
pipeline initially reduces the acquired volume to a minimal region of interest (ROI) 
around the tool-tip to restrict the subsequent analysis to the relevant surgical area 
(see Fig. 2b). A U-Net-based segmentation network then extracts the retinal layer 
boundaries of the ILM and RPE along with the instrument surface from the relevant 
B scans (see Fig. 2c). The joint segmentation of retinal layers and instruments in 
adjacent B-scans allows the reconstruction of the surgical environment as a set of 
point clouds. As Fig. 2d illustrates, the generated point clouds ånally enable dis-
tance estimation between the instrument and the retinal layers, estimation of the 
cannula insertion direction, the contact point prediction of the robot with the retina 
surface, and the identiåcation of the injection target area. The overall system showed 
high potential for (autonomous) robotic subretinal injection by achieving the 
required distance estimation accuracy with an average error below 10 micrometers, 
high processing rates of 15Hz, and useful intraoperative visualizations during the 
insertion procedure.
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Fig. 2 Setup for iOCT-guided robotic subretinal injection. (a) A robotically guided 41 gauge cannula 
combined with an iOCT device. The blue and magenta arrows, as well as the white bounding box, 
indicate the volume acquisition area. (b) Identiåcation of the ROI around the instrument tip indicated 
by the blue bounding box. (c) Joint segmentation of the ILM (red) and the RPE (green), as well as the 
surgical instrument (blue). (d) The point cloud representation of the retinal layers (red and green) and 
the injection target area (visualized as the yellow point cloud between ILM and RPE). The tool insertion 
direction is illustrated using the yellow line. (Adapted with permission from [87]) © The Optical Society

A current limitation to developing algorithms for iOCT-guided robotic intraocu-
lar surgery is the restricted availability of dedicated datasets required for learning- 
based approaches or to test algorithms on datasets with known instrument-tissue 
conågurations. To encourage the development of data-driven algorithms for robotic 
intraocular surgery, a årst work [90] proposed a framework to synthesize iOCT data 
from a purely virtual environment consisting of retinal layer meshes and virtual 
instrument models. Given the controllable nature of the virtual setup, the exact con-
åguration of retinal layers and instruments is known and can be modiåed, which is 
not possible in the typical model eye or animal experiments. The proposed method 
to generate the synthetic iOCT data considers this virtual setup. A rendering 
approach årst captures the layer and instrument conåguration in a sub-volume of 
the scene, thereby mimicking the imaging area of an iOCT system.

The extracted positional information of retinal layers and instruments then allows 
the generation of cross-sectional label maps, including an explicit modeling of 
iOCT typical imaging artifacts, such as instrument shadowing and mirroring arti-
facts. A Generative Adversarial Network (GAN) ånally converts these label maps to 
synthetic iOCT B-scans, modeling other physical properties of the image formation 
process containing iOCT typical speckle noise and signal attenuation. Experiments 
showed high perceptual similarity between real and synthetic iOCT B-scans and 
demonstrated the beneåt of synthetic data for developing machine learning algo-
rithms to support robotic intraocular surgery.

5  System Modeling and Control for Intraocular 
Robotic Microsurgery

Safe and efåcient intraocular robotic microsurgery requires machine learning tech-
niques for precise and reliable robot localization and mapping and intraoperative 
guidance as well as to predict and act on any adverse events [2]. The challenge 

I. I. Iordachita et al.

https://pezeshkibook.com



137

  

 

 

Artiåcial Intelligence in Intraocular Robotic Microsurgery

resides in combining the OCT åne detail and depth information, microscopy broad
perspective, other sensor (e.g., force) data, and robot precision and steadiness in a
consistent framework that  will  help  augment the surgeon’s  ability  to  execute  any
surgical tasks.

5.1  Video-Based Guidance

Mapping the robot space onto microscope image space has been widely investigated
by many teams for automatic positioning of surgical instruments  [26]. Numerous
research studies demonstrated the  ability  to estimate the distance  to  the  retina by
employing stereo cameras [78] or reæections of a spotlight [44,  91,  92]. However,
only a few of them [44,  91,  93,  94] have achieved automated positioning. For exam-
ple, Tayama et al. [94], using a teleoperated surgical robot, exploited the dynamics
between tool-tip and its casted shadow on the retinal surface to surmise depth. When
the  surgical  tool  moved  close  to the  retina, the  surgical  tip and its shadow  in the
microscope image converged by a predeåned pixel distance, and the robot was sig-
naled to stop  thereby ensuring safety. Yang et al. [91] proposed a structured-light
approach for retinal surface estimation, employing the handheld robot Micron [41]
to provide automatic scanning of a laser probe and creating projected beam patterns
on the retina. By analyzing the patterns, geometry was possible to reconstruct the
retina  surface.  The  method  was  validated  during  automated  photocoagulation  in
realistic eye phantoms. Similarly, Zhou et al. [95] employed a spotlight-based guid-
ance for 3D navigation of a microsurgical instrument in a vessel tracking task with
Steady-Hand Eye Robot (SHER) [35]. This technique outperformed manual execu-
tion and cooperative control of the SHER in a head-to-head comparison.
  More recently, deep networks have been used to output robot controls or way-
point  trajectories  to  solve  navigation  tasks  in  retinal  surgery.  Kim  et   al.  [93,  96]
demonstrated a CNN that predicts a distance vector between the surgical tip and the
desired target tissue to be reached based on many expert demonstrations of the tool
navigation task. The distance vector was then utilized for autonomous navigation of
surgical tools and estimation of the retinal geometry by approximating a spherical
proåle. As an interesting feature of this work, the network could interact with the
user  via  the  network  input.  Speciåcally,  the  user  was  able  to  specify  the  desired
position to be reached on the retinal surface by directly clicking on the visual feed
of the surgery (using a mouse cursor) (Fig.  3a). The advantage of this approach was
that the user was only required to specify goals in 2D via a mouse click from top-
down view and the network outputted distance vectors in 3D space. The network
was shown to be capable of autonomously navigating to various locations across the
retinal  surface  with  approximately 100  micrometers in  XY  accuracy (Fig.  3b–d),
which may be sufåcient for streamlining surgical tasks such as needle insertion or
tissue  grasping. Additionally, the learned network was  combined  with an optimal
control framework for safe trajectory generation while satisfying known kinematic
constraints,  such  as  the  remote-center-of-motion  (RCM)  constraint  and  non-
penetration  constraint  of  the  estimated  retinal  geometry,  which  are  essential  for
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Fig. 3 Surgical tool navigation using a convolutional neural network and optimal control: (a) The 
surgeon selects the desired goal to be reached by directly clicking on the visual feed of the surgery. 
The network generates a distance vector from the current tool-tip position and the goal location in 
3D space. This vector is used for autonomous navigation of surgical tools. (b) Benchmark task for 
assessing the autonomous navigation accuracy; the white squares are the desired positions to be 
reached, and the blue squares are the ånal landing position navigated by the network. (c) Benchmark 
task in the presence of unseen distraction such as a forceps to test network robustness. (d) The 
network can be used to reconstruct the eye geometry and perform simple autonomous tasks like 
vessel following. (Image © Marin Kobilarov)

ensuring safety during surgery. An extension of this work integrated chance- 
constrained optimal control for autonomous navigation to provide a more natural 
formulation of safety based on the network’s output variance [97].

5.2  OCT-Based Guidance

OCT is a non-contact optical imaging modality that provides depth-resolved cross- 
sectional images in tissues [98]. Comparatively to microscopy, OCT provides higher 
resolution, although at a higher price. Besides the Microscope Integrated OCT (see 
Sect. 4), OCT information could be acquired through intraocular surgical instru-
ments [69, 72]. More recently, OCT guidance has been widely employed in robot- 
assisted intraocular surgery: (1) using iOCT [99–103] and (2) instrument embedded 
OCT [52, 68, 70, 104]. Comprehensive reviews about OCT- aided systems for vit-
reoretinal surgery could be found in [26] and [105].

Machine learning techniques could be useful for augmenting the robotic preci-
sion and steadiness with OCT åne detail and depth information in intraocular 
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robotic surgery. One recent emerging area of methods for robotic control is deep 
reinforcement learning (RL) [106, 107], which can solve challenging robotic prob-
lems that are otherwise difåcult to formulate via supervised learning or classic opti-
mal control strategies mentioned above. One drawback of reinforcement learning is 
that it takes a substantial amount of time to train and requires real-time interaction 
with the physical world, which is not feasible in safety-critical applications like 
surgery. Therefore, RL has shown progress in tasks where simulation training can 
be easily transferred to the real world or tasks that require low dimensional inputs 
rather than large dimensional inputs like images to accelerate training time. One 
interesting application of RL in ophthalmic surgery has been demonstrated in nee-
dle insertion in corneal keratoplasty by Keller et  al. [108]. However, traditional 
methods using optimal control with learning-based perception are also effective 
solutions to this problem as demonstrated by Edwards et al. [109]. Still, since RL 
methods hold the promise to be a generic method for solving challenging robotic 
problems, active research is being done to make RL more efåcient and transferable 
to real-world robotic tasks.

5.3  Force-Base Guidance

Recently, deep neural networks have emerged as generic black-box models that can 
be used to tackle a wide array of challenging problems. Several applications in oph-
thalmic surgery include predicting the surgeon’s actions, warning the surgeon of 
dangerous events, or even automating parts of the surgical task. Various sensor data 
including force, robot kinematics, and images have been used to build systems for 
active surgical intervention and automation.

One application of active intervention using force data was demonstrated by 
He et al. [66], who utilized FBG force sensors to train a recurrent neural net-
work (RNN) to characterize a surgeon’s behavior. The novel active interven-
tional control framework (AICF) was shown to enable prediction and prevention 
of unintentional and potentially risky maneuvers of the surgeon. It should be 
noted that the system was considered active in the sense that it actively inter-
fered with the task, when necessary, in a predictive and intelligent manner, 
rather than in a passive manner by only damping the motion after the undesired 
event occurs. Figure 4 top shows the overall scheme of the proposed framework. 
The framework consisted of an FBG-based force-sensing tool attached to the 
SHER’s end-effector [110], an RNN predictor, and an adaptive admittance con-
troller. To design the RNN, the measurements from the FBG sensors along with 
velocity of the robot’s end-effector and the insertion depth of the tool inside the 
eyeball were used. The data was fed into an RNN with long short-term memory 
(LSTM) units to predict undesired instances in terms of forces at the scleral 
port. When an undesired instance was predicted by the RNN, the adaptive admit-
tance controller then actuated the SHER to partially interrupt the user maneu-
vers and perform compensatory motions to prevent the excessive range of scleral 
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Fig. 4 Active interventional control framework: (Top) overview of the AICF consisting of a force 
sensing tool, an RNN predictor, an admittance control system, and the SHER research platform 
[110]. The robotic manipulator is activated to move at a varying speed to decrease the resulting 
scleral forces. (Bottom) A successful example of AICF intervention on the scleral force. When the 
label is 0, AICF is inactive; when the label is 1, 2, or 3, AICF is activated, and the desired velocity 
of the tool at the sclera frame (푉xd, 푉yd) is assigned; as the result, the scleral force (퐹x, 퐹y) is reduced 
to remain within the safety boundaries (퐹gate). (Image © Iulian Iordachita)

forces. The force sensing tool was previously developed to measure the scleral 
force and the insertion depth [63]. In this study, it was assumed that the scleral 
force characteristics could be captured through a short history of time series of 
sensor measurements. This assumption was made considering the relatively 
slow dynamics of human arm motion, especially during microsurgical proce-
dures. An RNN network with LSTM unit [111] was then constructed to make 
predictions about the scleral force status based on the history.
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The scleral force, the insertion depth, and the robot kinematic velocities of past 
h timesteps were fed into the RNN as the input; the RNN outputs the probabilities 
of the scleral force status in the 푡 푛 time steps, labeled as safe and unsafe by compar-
ing it to a safety threshold 퐹gate [112]. The robot admittance control scheme was 
switched to the interventional mode [64] when the predicted scleral forces were 
speciåed as excessive (prediction label = 1, 2, 3). In this mode, the related compo-
nents of the tool velocity in the sclera frame were assigned a desired value to reduce 
the scleral force. In a multi-user experiment with a common task during vitreoreti-
nal surgery, called “vessel following” and involving 14 volunteers, the system dem-
onstrated a signiåcant reduction of undesirable force events outperforming two 
benchmark conditions: one with auditory feedback (AF) [113] and one with real- 
time feedback (RF) [114]. The intervention effect of AICF on the scleral forces is 
depicted in Fig. 4 bottom. When an excessive force status is predicted (label = 1, 2, 
3), the scleral force is suppressed in the related direction by AICF, thus preventing 
it from breaching the prescribed safety boundary.

The AICF approach also resulted in statistically signiåcant lower user ratings, 
where a lower rating indicated a higher rate of assistance provided by the system. 
The predictive behavior of the AICF also resulted in an ahead-of-time activation of 
intervention motion, reducing the sudden impact of the safety algorithm as com-
pared to RF. Overall, the results indicated the AICF’s effectiveness in increasing the 
safety level of robot-assisted simulated retinal surgery by reducing the undesired 
forces applied to the scleral port by the surgical tool.

6  Future Directions and Conclusion

Currently, robotic assistance augmented with artiåcial intelligence is expeditiously 
growing and evolving in surgery, and it is doubtless that this process will continue 
in the future [1]. Following this trend, the highly technical åeld of robotic ophthal-
mic surgery has witnessed increasing growth in technological developments and 
capabilities [2, 25, 115]. To completely realize the potential of robotic assistance in 
ophthalmic surgery, it is of paramount importance to involve machine learning, to 
address the known limitations, to discover the still unknown others, and to expand 
the current achieved beneåts. Besides addressing the challenging aspects presented 
above, future developments may be focused on, but not limited to, safety enhance-
ment, human-robot interaction, and robot autonomy.

Safety is chief among the requirements for robotic assistance in ophthalmic sur-
gery and may be the most challenging one to be properly deåned, implemented, and 
evaluated. For example, safe interaction between tissue and the surgical instrument 
could be enabled through sensor fusion and machine learning by aggregation of 
multi-modal data such as camera image [116, 117], iOCT images [100, 101], robot 
end-effector position [64, 99], and force measurements detected with sensorized 
tools [63] or vision-based force-sensing [118, 119]. Machine learning techniques 
can automatically learn accurate mapping between visual-geometric information 
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and applied force [1] and enhance the safety and effectiveness of the robotic-assisted 
procedures.

As a multidisciplinary åeld, incorporating knowledge from various disciplines, 
including artiåcial intelligence and robotics, human-robot interaction (HRI) can 
help with developing effective communication between robot and human operator 
[1]. Owing to the limited number of robotic platforms for eye surgery, the interac-
tion between surgeons and microsurgical robots is a less explored research direction 
that will very likely require continued efforts for improvement in the future. This 
development is expected to substantially improve the HRI safety in eye surgery and 
open the operating room door for intraocular robotic surgery.

Similar to other types of surgery, AI-based automated and even autonomous oph-
thalmic microsurgery is likely to be implemented [24]. However, owing to the sig-
niåcant challenges involved in surgical robotic autonomy, existing robots have 
lower degrees of autonomy. In intraocular surgery, there is no example of achieving 
automation of all surgical steps. As presented above, the relevant research is focused 
on automation or semi-automation of speciåc tasks (e.g., [120, 121]). Moving for-
ward, a challenging aspect to be addressed is the need for a robotic system to antici-
pate, detect, and respond to possible failure modes [122]. Machine learning methods 
could facilitate this process and will likely require collection and analysis of data 
from a broad number of surgical procedures to develop the necessary algorithms to 
correctly, robustly, and reproducibly address the surgical complex decisions [24].

In conclusion, the superhuman challenges associated with intraocular micro- 
surgery could be addressed with robotic assistance. Relevant capabilities enabled by 
intraocular robotic microsurgery include, but are not limited to, tremor canceling, 
enhanced dexterity, micrometer-scale distance sensing and positioning precision, 
haptic feedback, sub-millinewton force sensing, and others. Successfully performed 
clinical trials on robot-assisted eye interventions have proved the possibility of 
translating robotic technology into clinical practice. However, medical robotics for 
eye surgery is still associated with implementation challenges related to learning 
curves, cost, risks, and complications that make the robotic surgery an ideal target 
for artiåcial intelligence. Machine learning techniques (e.g., deep learning with its 
æavors of neural networks) are presently being applied to preoperative planning, 
anatomical targets and tool segmentation and recognition, intraoperative tool guid-
ance, and so forth. When fully integrated with the human-machine interface, artiå-
cial intelligence and robotics will be able to reduce procedure variability; enhance 
precision and task capabilities; reduce error rates, costs, and fatigue; and improve 
ergonomics during surgery, and, at the end, all are expected to lead to improved 
surgical outcomes and provide advanced and safe surgical care for patients.
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Clinical Case: Laparoscopic Surgery

Nobuyoshi Takeshita and Masaaki Ito

Abstract Artiåcial intelligence (AI) has been gradually introduced into the åelds 
of radiological and endoscopic diagnosis as supports for clinical practices. In the 
åeld of laparoscopic surgery, AI-based image recognition technology is also prom-
ising for the development of surgical navigation, skill assessment, and OR (operat-
ing room) management. Some of the active research and developments in this area 
using deep learning approach include the identiåcation of surgical phases, surgical 
instruments, and anatomical structures. The major tasks of AI can be divided into 
image classiåcation (the task of assigning a whole image to a speciåc class), object 
detection (the identiåcation of the location of lesions, organs, or other objects with 
a circle or a box region of interest), and semantic segmentation (the recognition of 
the precise pixel-wise borders of objects). To develop these AI-based systems, a 
large number of still images from surgical videos are required as the training set, a 
dataset of annotations for each still image. Therefore, the construction of the high- 
quality surgery video database which contributes to the development is desired. We 
need to establish this infrastructure to boost the developments of AI-based surgical 
systems with global collaborations.

Keywords Laparoscopic surgery · Image recognition · Deep learning · Surgical 
phase recognition · Surgical video database

1  Introduction

In recent years, the number of laparoscopic surgeries being performed has increased 
at a rapid pace, and their safety and efåcacy have been studied in a recent report [1]. 
In contrast, laparoscopic surgery requires a high level of skill, and it is known that 
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there are disparities in outcomes between facilities and surgeons. Taking colorectal 
cancer as an example, it has been reported that treatment outcomes, such as anorec-
tal preservation and local control rates, are superior in facilities that conduct a higher 
number of surgeries per year [2]. In addition, recurrence-free survival is superior in 
these facilities when surgeries are performed by trained colorectal surgery teams 
compared with when they are performed by general surgery teams [3]. Thus, the 
quality of surgery is greatly inæuenced by the skill of the surgeon, which affects not 
only short-term outcomes such as perioperative complication rates but also long- 
term outcomes such as survival rates.

The equalization of laparoscopic surgery and the shortage of surgeons are urgent 
issues in surgical practice, and in conjunction with the COVID-19 pandemic and 
shortage of medical resources, solutions that improve surgical efåciency and save 
human resources, such as surgical robots and other surgical support devices and 
systems, are needed in clinical practice. In the åeld of surgery, there is an increasing 
need for such methods. Visualization of surgical techniques, which until now has 
been performed in the form of tacit knowledge based on surgeons’ skills and judg-
ment stemming from their experience and knowledge, is extremely important as an 
approach to solving the above issues, both from the perspective of surgical educa-
tion and the development of new surgical support systems. Since a large number of 
surgical videos have been accumulated due to the spread of laparoscopic surgery, 
attempts to quantify and digitize surgery based on this vast amount of data have 
been initiated. These data can be utilized as a training dataset to create an algorithm 
for machine learning, one of the subdomains of artiåcial intelligence (AI). The 
development of a surgical support system by utilizing these data has been initiated, 
and high expectations are placed on these systems to support intraoperative decision- 
making and automation of surgery.

2  Image Recognition Using Deep Learning Models 
for Laparoscopic Surgery

In laparoscopic surgery, surgical videos are widely used for educational and research 
purposes. Laparoscopic surgery provides a great deal of information to the surgical 
team due to its magniåcation effect and improved image quality, but it is difåcult for 
team members to interpret all of this information equally in real time. In contrast, 
this visual information is considered to be the most essential information generated 
during the surgical procedure compared to other information such as tactile infor-
mation. The image recognition approach is a very reasonable method to help the 
surgical team interpret visual information.

Deep learning is a type of machine learning method that is based on neural net-
works, and the most important feature of deep learning is that it automatically 
extracts the features that should be focused on for analysis during the learning pro-
cess. Some of the active research and developments in the area of laparoscopic 
surgery using image recognition and deep learning include the identiåcation of 
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surgical phases, surgical instruments, and anatomical structures. The major tasks of 
AI can be divided into the following: image classiåcation (the task of assigning a 
whole image to a speciåc class), object detection (the identiåcation of the location 
of lesions, organs, or other objects with a circle or a box region of interest), and 
semantic segmentation (the recognition of the precise pixel-wise borders of objects). 
These AI models are constructed by preparing a large number of still images from 
surgical videos and a dataset of annotations for each still image and then using them 
to train the machine learning algorithm.

2.1  Identiåcation of Surgical Phase in Laparoscopic Surgery

Understanding and recognizing the process and context of surgery is the årst step 
in learning surgery for medical students and others. In the development of image 
recognition in laparoscopic surgery, surgical action recognition has been used in 
various ways, but the most widely used method is surgical phase recognition 
(Fig. 1). Automatic surgical phase recognition can be useful for surgical training of 
surgeons and indexing of documented procedures, as well as for intraoperative 
information sharing, efåcient operation room management, providing alerts on 
upcoming adverse events, and in efforts to automate surgery [4]. If the surgeon 
himself can recognize which surgical process is taking a long time, he can know 
where to focus training, and if he can look back on the surgery efåciently, the bur-
den on the surgeon will be reduced. If it is possible to share in real time the infor-
mation regarding which process is currently being performed in surgery, the 
operating room management leader can consider preparations for the next surgery, 
stafång, timing of replacement, and so on. If we know in real time that a particular 
surgical process is taking a long time, we can quickly detect the possibility that 
something unexpected is happening, and we can consider the need for intervention 
or prepare for adverse events. These ideas are similar to those used in many indus-
trial process engineering applications.

Fig. 1 Surgical phase recognition using image classiåcation in laparoscopic sigmoid/liver 
resection

Clinical Case: Laparoscopic Surgery

https://pezeshkibook.com



154

The development of surgical phase recognition has been studied most actively 
with respect to laparoscopic cholecystectomy. Laparoscopic cholecystectomy is the 
oldest and most commonly performed laparoscopic procedure. The operative åeld 
is relatively åxed, which makes it a good årst step in the training of beginning sur-
geons, as well as in image recognition and other engineering techniques. However, 
even in laparoscopic cholecystectomy, the surgical phase itself is deåned in a wide 
range of ways [4], and there are still many issues to be solved before a general-
purpose system can be developed. Naturally, a greater number of processes that are 
to be classiåed lead to an increase in the difåculty of the task of image classiåcation 
and a concomitant decrease in the accuracy of the method. The accuracy will simi-
larly decrease when it comes to atypical surgical åelds and procedures. Other types 
of surgeries that utilize surgical phase recognition include laparoscopic sleeve gas-
trectomy [5], laparoscopic colectomy [6, 7], robot-assisted prostatectomy [8], per-
oral endoscopic myotomy [9], etc., with accuracy rates ranging from about 92% for 
the most accurate to about 69% for the least accurate. This variation is thought to be 
largely due to the presence or absence of standardization of the surgical processes 
and techniques. In addition, as discussed below, the accuracy will also be highly 
dependent on the number of cases in the surgical video database to be utilized as the 
training set.

2.2  Identiåcation of Surgical Tools in Laparoscopic Surgery

Recognizing the use and movement of surgical tools is valuable for the analysis of 
surgeon’s performance, surgical training, and even market analysis. If the move-
ment of forceps during surgery can be evaluated objectively and quantitatively, it 
will help in the analyses of the surgical economy, efåciency of the performance, the 
characteristics of forceps movement, and its correlation with adverse events. In the 
åeld of robot-assisted surgery, in addition to sensor information attached to forceps, 
the status and movement of the forceps on the image are also very important com-
plementary information.

Recognition of the surgical phase mainly uses the image classiåcation method, 
whereas, in the recognition of surgical tools, location and tracking the tips of instru-
ments can also be useful information (Fig. 2). Therefore, in addition to image clas-
siåcation, object detection methods are often used. In image classiåcation of 
surgical tools, the recognition of the tools is reported to have an accuracy of 85–92% 
[10, 11], whereas detection of the location of the tools is reported to have an accu-
racy of 38–86% [12–14]. Attempts to improve the accuracy of surgical phase recog-
nition by using these tools together have also been reported [15]. Furthermore, 
attempts using semantic segmentation methods have been initiated [16]. However, 
since the recognition of surgical instruments by semantic segmentation requires the 
creation of AI models by annotating the outlines of the instruments, it is a time- 
intensive task, and it is difåcult to address the variations in surgical instruments. 
There is a requirement for efåcient annotation and learning methods [17, 18]. 
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Fig. 2 Surgical tool recognition using semantic segmentation and object detection in laparoscopic 
sigmoid resection

Although inorganic objects in the surgical åeld are relatively easy to recognize visu-
ally compared to other anatomical structures, the wide variety of surgical tools that 
need to be recognized by the algorithm also reduces the accuracy for each tool. 
Moreover, unlike surgical phases and anatomical structures, usage of surgical tools 
is subject to change continuously in the real world as time goes by, and it is difåcult 
to adapt them to a system that can be continually utilized in clinical practice without 
constantly updating the AI models. For the development of continuously updating 
tool detection AI models, other approaches that do not require manual annotation 
must be developed.

2.3  Identiåcation of Anatomical Structures 
in Laparoscopic Surgery

During surgery, there are many anatomical structures that need to be marked or 
road-signed to perform the surgery efåciently and avoid intraoperative organ injury. 
It is known that intraoperative organ injury is mainly caused by misidentiåcation or 
lack of conårmation of anatomical structures. It has been found that the risk of 
intraoperative injury is higher in surgeries performed by less experienced surgeons. 
In contrast, it is also known that intraoperative injuries occur with a certain fre-
quency even when surgeries are performed by surgeons with the experience of a 
large number of cases. This indicates that it is difåcult to maintain concentration 
and continue to perform anatomical structure recognition with high accuracy during 
long surgeries. In the intra-abdominal region, where anatomical structures are inter-
mingled, intraoperative organ injuries that require prolonged hospitalization and 
additional procedures, large vessel injuries that are sometimes fatal, and nerve inju-
ries that reduce the quality of life occur with a certain frequency. Therefore, image 
recognition for helping with the surgeon’s identiåcation of anatomical structures is 
valuable for surgical safety. Development of models that highlight key areas of anat-
omy and safe or unsafe areas of dissection and assist and alert the surgeon using 
object detection or semantic segmentation is also being attempted (Fig. 3) [19, 20]. 
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Fig. 3 Ureter and nerve recognition using semantic segmentation in laparoscopic sigmoid 
resection

In cholecystectomy, the development of image navigation for anatomical structures 
and the recognition of critical view of safety and quality evaluation of it are topics 
that are being actively pursued [21, 22], and it is hoped that this will lead to avoid-
ance of bile duct injuries during surgery.

For the development of an AI navigation system using image recognition of ana-
tomical structures, we have to consider the regulatory processes and ethical issues 
associated with the use of such medical devices. In the case of clinical implementa-
tion of these initiatives, the concept directly affects surgical safety and the surgeon’s 
decision. Therefore, there is a strong need for high-quality manual annotation for 
training data, appropriate management of clinical data, and highly accurate AI per-
formance. Also, to be widely used in the clinical åeld, it must be versatile in terms 
of recognition accuracy. As for the manual annotation to create training data, trained 
surgeons need to guarantee the quality of the dataset, and inter-annotator agreement 
based on well-maintained standard operating procedures is necessary. In the area of 
endoscopic and radiological diagnostics, AI-powered systems have been developed 
and are beginning to be introduced to the market to provide physicians with AI sup-
port. It will not be long before surgeons may operate while using Google Maps-like 
navigation of anatomical structures. This will also be a great årst step toward the 
automation of surgery.

3  Construction of Surgical Video Database

Without exception, the development of image recognition as described so far must 
begin with the construction of surgical video databases. The construction of such 
databases must be surgeon-driven and will require an enormous amount of effort 
and management of ethical issues. The databases of laparoscopic surgery videos 
reported to date include laparoscopic cholecystectomy [15, 23, 24], laparoscopic 
colectomy [16, 25], laparoscopic sleeve gastrectomy [26], laparoscopic gastric 
bypass [27], laparoscopic hysterectomy [28], other general surgery [29], 
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Fig. 4 Surgical video database constructed in our project, “S-access JAPAN”

gynecological area [11, 30], etc. The number of data included can range from a few 
cases to several hundred cases. In considering a database useful for AI development, 
the variation within the data is as important as the amount of data. Data for AI model 
training can easily lead to overåtting, which reduces the generality and external 
accuracy of the model. In order to utilize the database for research and development, 
it is also important to determine whether it is necessary to obtain consent from the 
patient. The treatment of personal information and the attribution of rights to surgi-
cal videos are very important topics to be discussed, although there are regional 
differences.

We have built databases of laparoscopic surgery videos from 2017, named 
LapSig300, which contains surgical videos of laparoscopic sigmoid resection, phase 
classiåcations, and other data from 19 centers and 300 cases [16]. A series of surgi-
cal workæows were classiåed into nine phases and three actions, and the areas of 
åve tools were assigned by annotations. More than 82 million frames were anno-
tated for a phase and action classiåcation task, and 4000 frames were annotated for 
a tool segmentation task. Furthermore, we started the “S-access JAPAN project” in 
2019 as an industrially available database based on patient consent. A total of 3000 
surgical video data were collected from all over Japan for laparoscopic cholecystec-
tomy, laparoscopic colectomy, laparoscopic/robot-assisted low anterior resection, 
laparoscopic liver resection, laparoscopic/robot-assisted gastrectomy, laparoscopic 
pancreatectomy, robot-assisted prostatectomy, etc. (Fig. 4). This database included 
the annotation of surgical phases, and background clinical information on the 
patient and surgeon was compiled. Moves are underway to extend these databases 
to gynecology and esophageal surgery. In addition, in collaboration with interna-
tional collaborators, we have started to set up a framework for the construction of 
databases in Asia, Europe, and the United States for the validation of AI models 
developed using data from outside of Japan. In order to develop AI support systems 
for laparoscopic surgery that can be used globally, it is essential to build a surgical 
video database based on data collected from many countries worldwide.
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4  Skill Assessment Database and Efforts Toward 
Automatic Evaluation

Education of young surgeons and training of supervisors are essential for the 
improvement of the quality of surgical procedures, and objective evaluation of sur-
gical skills is important for this purpose. Various methods have been tried to evalu-
ate surgical skills, such as the Objective Structured Assessment of Technical Skill 
(OSATS) and the Global Operative Assessment of Laparoscopic Skills (GOALS), 
but most of them lack objectivity, and the time and effort involved in the expert 
evaluation process are problematic, even though they are relatively widely accepted 
[31, 32].

In an approach to objectively quantify the surgeon’s performance, the use of AI 
makes a lot of sense. Moreover, such an AI-driven approach can also be used to 
efåciently implement the performance measurement system. Image recognition of 
surgical tools, surgical phases and actions, and other objects that can be the subject 
of surgical performance evaluation, as described above, has the potential to auto-
matically quantify surgeon performance in a full surgical video. By quantifying 
every action and total procedure during surgery, we can compare them objectively 
and at the same time evaluate the growth of surgical techniques after training. 
Another approach is the three-dimensional convolutional neural network approach 
that can be used to evaluate surgical skills from videos [33]. This approach can be 
fully automatic and easy to use for various types of surgery, and no special annota-
tions or kinetics data extraction are required. In any case, to streamline and auto-
mate skill evaluation, in addition to the image recognition approaches described so 
far, it is necessary to deåne what constitutes good surgical skills and then create a 
database of the results of skill evaluation by experts in the form of surgical videos 
and data sets.

We are exploring an objective and quantitative method for evaluation of sur-
gical skill in laparoscopic surgery using AI-based image recognition, utilizing 
data from the Japan Society for Endoscopic Surgery (JSES) initiative of surgical 
skill accreditation review [34]. The data from the technical evaluation results 
will be used to develop an AI automated surgical skill evaluation system. First, 
some kinds of surgical phase recognition models, surgical tool recognition mod-
els, and other object and action recognition models have been developed through 
machine learning so far. As described above, we will be able to quantify sur-
geons’ performance completely in every surgical video by using these models. 
By linking these quantiåed results to the expert’s scoring results for every case, 
parameters and correlations to assess surgical skills and performance in videos 
will be determined. Finally, a prototype of the AI automated skill evaluation 
system will be constructed. We think it can be used in various applications in 
education and training in the åeld of laparoscopic surgery. Firstly, we need to 
validate this new system through a prospective comparison study in a JSES 
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surgical skill accreditation review in the future. Then, this AI automated skill 
evaluation system will be useful for the årst screening tool and evaluation sup-
port in JSES surgical skill accreditation review by reducing the burden on evalu-
ators. Also, this system can provide feedback to surgeons based on the objective 
assessment results by clarifying the points that lack surgical skills and require 
training. It will lead to efåcient and effective training for young surgeons.

5  Future of AI in Laparoscopic Surgery

AI development efforts in laparoscopic surgery have only just begun. The main 
approach is image recognition, which is a concept to improve efåciency and safety 
of surgery and operating room management through visual information support, 
such as surgical phase recognition, surgical instrument recognition, and anatomical 
structure recognition. In the approach of image recognition for navigation using 
laparoscopic surgical view, it can provide real-time superåcial information but can-
not address invisible information such as deeply located or hidden anatomical struc-
tures which can be more valuable for surgeons to perform operations safely and 
securely. By using preoperative imaging methods such as computed tomography 
and magnetic resonance imaging, we can obtain the non-superåcial information of 
target anatomy. However, deformation and displacement of organs due to dissection 
and pneumoperitoneum cannot be ignored in laparoscopic surgery; thus, preopera-
tive images are sometimes not useful enough to provide precise anatomical infor-
mation during operation. To address this issue, we need to work on complementing 
the advantages of both preoperative and laparoscopic imaging or incorporating new 
technologies to give real-time information on anatomical structures located deep in 
the body.

In terms of steps taken toward the automation of surgery, efforts are underway to 
facilitate surgeon’s decision-making and automate surgical skill evaluation for the 
årst step in visual approach. The automation of surgery itself requires collaboration 
with surgical robot systems, and this will be possible by using robots as sensors and 
loggers to accumulate information other than images, which can then be utilized in 
the development of further AI models. As we make further progress in the process 
of automation of surgery, we will encounter more challenges. There are many tech-
nical and ethical hurdles in moving from the phase of assisting the surgeon in mak-
ing decisions to the phase of proactively performing surgical procedures by 
surgical robots.

Although the day when we will be operated by automated surgical robots does 
not seem to be near and we cannot easily imagine that day yet, it could result from 
an extension of the step-by-step development of these surgical innovations.
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Clinical Case: Maxillofacial Surgery

Qingchuan Ma

Abstract Surgeons are under an increasing workload due to the fast-growing 
patient population of oral and maxillofacial surgery (OMS). Previously proposed 
methods have a limited beneåt to surgeons’ manual work because of the signiåcant 
individual diversity in OMS patients. Artiåcial intelligence (AI) offers a promising 
tool to mimic surgeons’ decision-making mechanisms to reduce the workload. In 
this chapter, our recent achievements in OMS by using a machine learning-based 
approach to assist surgical planning were introduced. We collected both preopera-
tive and 1-year-later postoperative CT images of 56 patients to train a 12-layer cas-
caded deep neural network structure with two successive models. A virtual surgery 
planning approach was also presented to illustrate how the model-predicted results 
were further used to assist the surgeon’s planning work during Lefort I treatment. 
Current limitations and future trends of AI in OMS were also brieæy discussed. AI 
demonstrates its feasibility in assisting the human surgeon and shows great potential 
for reducing the workload. Preparation of annotated medical data, high computing 
power hardware, efåcient feature-extracting network, and ethical issues will be key 
challenges for a wide application of AI in OMS.

Keywords Artiåcial intelligence · Surgical planning · Oral and maxillofacial 
surgery · 3D cephalometry

1  Introduction

Oral and maxillofacial surgery (OMS) is a discipline that involved the diagnosis and 
treatment of anatomical defects in the mouth, jaw, face, neck, skull, and surrounding 
structures [1]. During OMS, surgeons need to perform a series of intricate opera-
tions in a very limited workspace while not causing fatal damage to the important 
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Fig. 1 Actual operation images during (a) and after (b) maxilla separations

nerves and blood vessels, as shown in Fig. 1. The surgeon’s view may be blocked by 
the soft tissues and cannot observe the surgical site using the naked eyes [2]. Typical 
OMS may last 8 h or even longer with the help of many surgical instruments and 
close cooperation between surgeon and assistant. The long-time and intense surgi-
cal procedure is a critical challenge of physical endurance even for highly experi-
enced surgeons. In addition, the surgeon needs to make a detailed surgical plan 
before surgery and recall it during surgery, which becomes an additional mental 
workload to the surgeon [3].

Some computer-assisted surgery (CAS) or robot-assisted surgery (RAS) has 
been applied to assist surgeons and relieve their workload during OMS [4]. However, 
these technologies heavily rely on surgeons’ own experience and still need human 
direct involvement in critical surgical steps. With the huge success of artiåcial intel-
ligence (AI) in image classiåcation and computer vision (CV), there are increasing 
interests among medical researchers to apply AI in OMS for developing intelligent 
surgical tools [5] or integrate AI with existing CAS/RAS technologies for improv-
ing the intelligence of surgical equipment [6]. In general deånition, AI-based sur-
gery is a research topic trying to reproduce surgeons’ professional intelligence in 
the medical åeld. As the speciåc application of AI, machine learning, especially 
deep learning, focuses on training intelligent models using medical data for reliev-
ing the workload of medical staff and augments their capability [7]. As for OMS, 
preoperatively planning is currently the most active research topic that AI (machine 
learning) has a promising potential to replace the old planning approaches [8].

In conventional OMS, surgical planning is an inevitable procedure in OMS for simu-
lating the skeletal changes before actual surgery to ensure safety and develop detailed 
operation programs [9]. In clinical practice, surgeons usually use 3D-printed models or 
surgical templates based on the computerized tomography (CT) image of the patient to 
measure and observe potential skeletal changes in advance [10]. However, such type of 
method is time-consuming and only allows limited trials. Therefore, various approaches 
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have been proposed to assist so-called virtual surgery, which enables the surgeon to 
conduct as many simulations as they want without the need for a surgical model or tem-
plate [11]. In the current workæow of virtual surgical planning, surgeons usually con-
ducted a cephalometric analysis for indicating the key biomechanical information of the 
patient’s head [12]. Thus, one technological category called landmark-based or land-
mark-oriented planning method was further developed, which selected speciåcally 
landmarks to indicate critical skeleton features and used their locations to reæect the 
changes of the surgical regions [13, 14].

Recently, the application of AI in medical imaging has substantially increased and 
achieved remarkable success in various åelds [15]. However, OMS still is an experi-
ence-centered surgical category and is not fully beneåted from the recent research prog-
ress in AI [16]. In this chapter, we introduced our group’s research case that used a 
machine learning-based approach for assisting surgical planning in OMS, which adopted 
a cascaded network structure to automatically predict optimal postoperative skeletal 
changes indicated by speciåcally selected anatomical landmarks. A custom virtual sur-
gery planning (VSP) module was also developed to interpret the model-predicted result 
and make double-check. The proposed approach aims to learn and subsequently imitate 
the decision-making mechanism of surgeons during surgical planning, showing great 
potential for exploiting the valuable experience of some top-level surgeons and making 
a balance between AI and human intelligence.

We also discussed the challenges of AI in OMS application and predicted future 
trends from a wider perspective. The discussion not only focuses on the technological 
limitations of AI applications but also involved non-technological issues. The predic-
tions of future trends are not limited to the preoperative planning that is the main topic 
of our research case; we also try to discuss the AI’s potential for covering the entire 
surgical circle of OMS from preoperative, intraoperative, to postoperative phase. We 
hope this chapter could give readers a speciåc application of AI in OMS while also 
providing a brief big picture to show the current challenges and future trends.

2  Research Case: AI-Based Assisted Model for OMS 
Surgical Planning

2.1  Data Pre-processing

Both preoperative and postoperative CT images from a database of patients under-
taking OMS from 2008 to 2017 at the University of Tokyo Hospital were evaluated 
in this study. The patients were screened by a professional surgeon according to 
inclusion criteria. First, only the CT images with the whole skull scanned were 
included, where the CT slices should cover at least a range from the nasion point to 
the menton point. Second, the CT data should have at least 330 slices. Third, both 
preoperative and postoperative CT images of a patient should meet the inclusion 
criteria. Fourth, the postoperative data should be 1 year later after the surgery. CT 
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Fig. 2 Landmarks’ location and corresponding skeletal changes before (a) and after (b) AI-based 
model prediction

images of 56 patients were qualiåed and selected ånally; we allocated 50 of them to 
the training group and 6 of them to the testing group.

All medical images were generated using a Canon CT with a pixel size of 
0.35 mm/pixel and slice thickness of 0.5 mm/pixel. The original DICOM data of the 
patient were imported into MIMICS to create a bone mask while deleting the irrel-
evant medical information. Subsequently, all mask slices in axial coordinate were 
exported as BMP pictures to be used as training materials. Afterward, the 3D model 
of the bone mask was created in MIMICS using a high-resolution mode. Finally, 
manual landmarking was conducted on the created 3D head model for preparing the 
ground-truth landmarks.

In this study, we empirically selected 11 landmarks to indicate the key character-
istics of the head of the patient, as shown in Fig. 2. The three landmarks at the skull 
region functioned as references, and the rest of the landmarks might be subject to 
location changes after OMS.  Manual landmarking was conducted by one of the 
authors. Each patient’s landmark data was saved as an 11 × 3 matrix, where the årst 
column represented the image sequence and the second and third columns were 
landmarks’ horizontal and vertical locations in the image.

2.2  Speciåc Processing for Preoperative 
and Postoperative Data

The exported slice images of each preoperative CT volume were standardized to 
330 slices and saved to a [330, 512, 512, 1] tensor. We adopted principal com-
ponent analysis (PCA) to correlate the inter-landmark relationship and 
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subsequently transfer them to a lower-dimensional space. To correlate both pre- 
and postoperative landmarks into the same coordinate, we adopted the iterative 
closest point (ICP) algorithm to calculate the transfer matrix between two data-
sets using three landmarks at the skull part to register the rest of the landmarks. 
After the PCA and ICP adjustments, the processed preoperative and postopera-
tive landmarks were used as training data for the årst model and second model, 
respectively.

2.3  Network Architecture

The proposed deep neural network structure has two successive models. The 
årst one is the landmarking model that extracts landmarks from 2D patches of 
3D volume. The second model is the regression model that uses the results of 
the årst model and predicts postoperative skeletal changes. Feeding the entire 
3D medical data directly into the landmarking model network may result in high 
computational cost and memory requirements. Therefore, we adopted a patch-
based method using 2.5D representations of 3D volume data [17]. For a certain 
point in the 3D volume, three 2D patches were extracted centering on the point 
to represent input image data sent to the network, which consisted of 3n patches 
with each patch having the same patch size. Consequently, the 2D patches were 
remapped as three-channel image data and fed into the CNN model. Another 
principle in the landmarking model is to jointly conduct the classiåcation and 
regression tasks for predicting the displacement and direction of the movement 
of the point toward the annotated landmark. These two tasks shared the same 
backbone network as shown in Fig. 3a. The backbone network of the årst model 
consisted of three convolution blocks, and each block had a standard Conv-
BatchNorm-ReLU operation. All convolution layers had the same kernel size as 
3x3 with stride = 1. A max-pooling layer followed every block to reduce the 
spatial dimension of the feature maps by half.

The årst model had two subnets following the backbone network for joint 
classiåcation and regression tasks. They shared a similar structure, including 
three fully connected (FC) layers. ReLU activation and dropout layer were 
added to each FC layer, except the last one. The loss function of the årst model 
consisted of two separate losses from two subnets. The loss of the regression 
subnet L1r was calculated as the mean square error (MSE). The loss for classiå-
cation subnet L1c is the standard cross-entropy loss. A scale factor α was applied 
to weigh two losses, and we empirically set α as 0.5. The extracted landmarks 
from the årst model were subsequently fed into the second model with a three-
layer multi-layer perceptron (MLP) for the prediction of corresponding postop-
erative landmarks. The årst and second FC layers had 32 and 64 neurons, 
respectively, and were followed by ReLU activation. The ånal output FC layer 
had 33 neurons, corresponding to the 11 landmarks of the postoperative phase. 
The loss function of the second model was also MSE.
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Fig. 3 Detailed network structure (a), virtual surgery planning results (b), and comparisons 
between model predicted and actual results (c)

2.4  Virtual Surgery Planning

The model-predicted result was interpreted and double-checked using a custom 
virtual surgery planning (VSP) module implemented in a commercial software 
3-Matics (Version 13, Materialise NV), which can automatically generate the 
digital åxing plate and navigation models based on the topological feature of the 
patient’s skull. The patient’s head bone was årst grouped into åve parts: skull, 
maxilla, mandible body, right ramus, and left ramus. The maxilla and skull were 
merged in 3-Matics after duplicating the new ones. Then the planned relocating 
gap between them was åxed for drawing guiding curves. Afterward, the custom 
åxing plates were created in sequence based on the guiding curve. The width 
and thickness of the plate were set as 3 and 2 mm, respectively, and the outer 
and inner diameter of the screw holes were set as 4 and 3 mm, respectively. The 
drilling holes were created by clicking preferred drilling locations and then cre-
ating the åxing plate based on surface topography. Finally, the digital åxing 
plates can be exported for 3D printing the actual åxing plates, and drilling holes 
can be used for creating navigation models for guiding the surgical movement 
of surgeons. The ånal results after custom VSP are shown in Fig. 3b,c.
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3  Experiments and Discussions of Research Case

We conducted an experiment to evaluate the performance of the proposed AI 
model and corresponding VSP modules when compared with the human sur-
geon. The result showed that the overall average accuracy of the AI model in the 
landmark level is 5.4 ± 0.6 mm. The total time from extracting the landmark to 
ånishing the surgical planning is 42.9 ± 0.1 seconds for each volume. The VSP 
results were compared with the actual results after a robotic surgical experiment 
based on 3D printed models by using the software Geomagic Control X (3D 
Systems Corp., Rock Hill, South Carolina, USA). It was indicated that the aver-
age RMS error of the whole models and the åxing plates are 0.87 ± 0.16 mm and 
1.00 ± 0.05 mm, respectively.

The comparison between the model-predict results and the real human surgeon’s 
surgical outcomes demonstrates the feasibility of the proposed methodology. The 
real medical CT volumes used in this study provided valuable research resources to 
develop an approach that can be potentially used in actual healthcare facilities. By 
contrast, some studies used medical data of healthy subjects [18] or excluded images 
with severe skeletal deformities [19], which may pose severe challenges during 
real-world application. The present study includes patients with various anatomical 
conditions, ranging from mild to severe. Therefore, the obtained experimental 
results are closely similar to the clinical results.

The use of the custom VSP approach enables the surgeon to generate custom 
åxing plates based on the topography characteristics of patients. Some surgical 
steps can be avoided such as using surgical splint and wire to åx the maxilla to 
the mandible, bending the titanium plates during surgery for maintaining 
planned displacement, and using the glabellar reference screw for the åxed skel-
etal marker. The cooperation between artiåcial intelligence and human intelli-
gence allows the surgeon to conduct a double-check and make some manual 
adjustments if the AI-produced results are slightly different from the real medi-
cal practice, thus signiåcantly simplifying the current workæow while still giv-
ing the surgeon the highest priority for controlling the surgical outcomes. Such 
kind of working philosophy could also solve the problem of ethical issue that 
concerns surgical safety by directly relying on AI for the human vital operation 
[20]. The custom manufacture of åxing plate could yield personalized treatment 
for making the plates closely contact the bone in most connecting areas rather 
than only around the plate’s holes. This characteristic could potentially solve 
the rebounding problem of titanium plates after surgery and reduce the possibil-
ity of a second surgery for re-åxing the plates.
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4  Key Challenges of AI in Maxillofacial Surgery

4.1  Lack of Annotated Training Materials

The larger number of annotated databases is the key contributor to the current suc-
cess of AI (machine learning). For example, the well-known ImageNet has more 
than 14 million labeled images, which becomes valuable research resources for test-
ing the latest network architecture in ILSVRC (ImageNet Large Scale Visual 
Recognition Challenge) [21]. However, there is still a lack of publicly available 
databases with a larger number of annotated medical data in OMS. Three factors 
may attribute to these limitations. The årst one is the difåculty to obtain abundant 
medical data. Unlike the common 2D images that can be easily obtained by using a 
common camera or collected from the internet, OMS images require professional 
surgeons to use expensive medical equipment like CT scanners to collect. The sec-
ond one is the difåculty to annotate the medical images. Annotation of the medical 
image was still limited to the professionals with medical backgrounds by using 
medical image software, which is more time-consuming and requires more image 
preprocessing. By contrast, common 2D images can be easily annotated even by 
common people without professional knowledge. The third difåculty is the ethical 
issue during data analysis and sharing. OMS image contains patients’ facial and 
anatomic information, which is under strict regulations of ethical issues [22]. 
Consequently, researchers need to anonymize personal information and only use the 
data within the medical facility, which forbade the researchers to combine their 
small datasets with other research institutes and publicly share the annotated data. 
Without enough training data, the performance of the AI model will be limited. 
Unfortunately, this problem currently cannot be solved by merely using the techno-
logical method; regulation changes such as giving limited permission of data shar-
ing for research purposes could be a possible way.

4.2  High Computing Power Hardware

The widespread use of the high-performance computing platform is another key 
factor of AI success, especially the use of NVidia GPU and its corresponding 
CUDA toolkit [23]. However, for the same amount of data, the requirement of 
computing power and memory is larger in 3D medical images than in common 
2D images. To solve this problem, some researchers adopted the compromise 
methods such as using the 2D representation of 3D data [18]; nevertheless, the 
requirement of computing power is still much higher than the pure 2D images. 
A multi-GPU array is a possible way to solve this problem. But the cost will also 
signiåcantly increase, easily beyond the researcher’s affordability. More invest-
ment in hardware is still a highly desirable way to train more clinical-applicable 
AI models in the future.
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4.3  Efåcient Feature-Extracting Network

Common 2D pictures only need 2D CNN to extract the key features. By contrast, 
OMS images are mostly CT images; some compromising approaches have to be 
adopted such as using the image preprocessing method by discarding the redundant 
information or resizing the image into smaller ones. Nevertheless, the network 
design and hyperparameter tuning are still much more difåcult for 3D images. To 
efåciently extract the useful image features, the network needs to be designed deep 
and large; more Conv layers and optimization layers (Dropout, BN) with more neu-
rons will be needed. For 2D images, there are some successful network templates 
such as U-net [24], V-net [25], Resnet50 [26], VGG19 [27], and YOLO [28], which 
allow researchers to use these backbone network structures and connect them with 
additional layers, only need to åne-tune the last several layers for their speciåc 
research purpose. By contrast, there still lack mature backbone networks that 
researchers can migrate for extracting the features of 3D medical images. 
Consequently, researchers have to spend much time designing and tuning the net-
works by themselves. The development of widely accepted pre-trained backbone 
networks for 3D medical images could be a major contribution to the research 
community.

4.4  Regulations and Ethical Issues

As aforementioned, OMS medical data includes highly sensitive patients’ anatomi-
cal and personal information; the regulations and requirement of ethical issues can 
protect the patients’ information from any unauthorized use and regulate research 
conduct [20]. However, on the one hand, the performance of the medical-used AI 
model is directly affected by the database size. On the other hand, current strict 
regulations limited the database expansion and only allow the limited person to have 
limited access to the data [29]. Regulations are necessary for proper medical data 
use, whereas too strict regulations will have a negative impact on the wider applica-
tion of AI in OMS. Compared with the fast-evolving AI research, current regula-
tions and ethical issues still lack updates for helping the researchers fully use 
medical data while still protecting the patients’ personal information. Some techno-
logical methods may be adopted such as anonymizing and encrypting the medical 
data; then these data can be used for a more widespread use such as database sharing 
and limited public use. Nevertheless, given the difference between AI and common 
biomedical research, a highly specialized regulation and ethical issue guidance 
could be a more practical way to solve the discrepancy between data utilization and 
data protection.

Given the above, if we compare AI to a car, the database like the gas, the hard-
ware like the engine, the network like the shape, the ethical issue like the trafåc rule, 
as shown in Fig. 4a. Only when we fueled enough gas, equipped with a powerful 
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Fig. 4 The similarity between AI’s application in medical åled and the four factors inæuencing a 
car’s performance (a), current application and future trends of AI in the full life circle of OMS (b)

engine, designed the car with an air dynamic shape, and enacted the driver-friendly 
trafåc rule, then we can make the car run longer and faster.

5  Future Trends of AI in Maxillofacial Surgery

A full life circle of OMS includes the preoperative, intraoperative, and postopera-
tive phases throughout the treatment. AI researchers are currently trying to make 
contributions in all three operational phases. Nevertheless, the research activity and 
research amount are interestingly different in different phases. Hereafter, a brief 
discussion was given to analyze current research achievements and predict 
future trends.

5.1  Preoperative Planning

Currently, the preoperative phase is the most active research section in the AI-based 
OMS [30]. There are three possible reasons for this phenomenon. First, all patients 
need to do CT scans before surgery, and surgeon can easily access these medical data. 
Second, there are numerous conventional researches in this phase available in the lit-
erature, which provides theoretical support for researchers when they try to use 
AI-based methods to solve previously proposed problems. Third, the AI models 
trained in this phase are mostly ofæine models, and researchers have enough time to 
conduct model inferring before surgery. The models also have no requirement of real-
time performance and have less dependence on high computing power. Therefore, 
there are a remarkable amount of AI-based research which can be found in this 
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surgical phase to replace or assist surgeon’s work, such as AI-based cephalometric 
analysis to extract anatomical landmarks from medical images [17], AI-based deci-
sion-making to mimic surgeon’s thinking mechanism [15], AI-based image enhance-
ment to delete noise from raw images [31], AI-based computer-assisted manufacture 
(CAM) to make åxing plate and surgical splints [32], and AI-based symptom classiå-
cation to detect the types of disease from medical images [33].

5.2  Intraoperative Guidance

By comparison, the AI-based research for surgical guidance in the intraoperative 
phase has a higher requirement of real-time performance and model accuracy, 
because the models need to give on-site and on-time responses during the surgery. 
Some researches in this area directly transferred from non-medical used applica-
tions and made some adaptions for speciåc use. For example, YOLO is a very suc-
cessful backbone network structure originally developed for vehicle navigation. 
Some researchers have successfully migrated YOLO to medical navigation for 
tracking the target tissue [28]. AI-based AR/VR is also a hot topic in OMS given 
that the intricate working condition hampered surgeon’s observation by soft tissue 
and other organs [34]. Besides, AI-based surgical video enhancement can give the 
surgeon clearer video streams compared with originally blurred ones [35]. However, 
AI-based models aiming for real clinic applications are still challenging in the intra-
operative phase due to the limited annotation data, high computing power, and high 
requirement of real-time performance.

5.3  Postoperative Follow-Up

Postoperative AI-based researches are very limited in OMS. This is mainly because 
some affecting factors of postoperative healing and evolving mechanisms caused by 
implant and surgical interventions are still unclear [36]. There is also less basic 
medical research to support AI-based follow-up research despite its high research 
value. In clinic, it is common that the post-6-month or post-1-year outcomes of 
patients differed from the surgeon’s original expectation; some patients even need 
to do re-treatment because of poor healing or loose åxation plates [37]. What are the 
causes of such kind phenomenon and how to counteract are still unclear. An 
AI-based predicting model is a promising tool that can potentially solve this prob-
lem by building a multi-input network considering the inæuences of the skeleton, 
soft tissue, åxing plate, dental occlusion, and gender using pre-, post-6-month, and 
post-1-year medical images. Unfortunately, there still has no adequate research 
regarding this topic.
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6  Conclusions

This chapter introduced the basic characteristics of OMS and the promising poten-
tial of AI in this surgical type. A research case regarding AI-assisted surgical plan-
ning approach was introduced, which consists of two successive models and a 
virtual surgical planning module. The current challenges of AI in the OMS and the 
future trends were also discussed for clarifying the limitations and possible applica-
tions of AI in OMS.  From our previous research and observation of the current 
research community, we believe that AI in OMS is still in a child phase, but it is 
currently growing fast and will become a powerful adult to support the human sur-
geon in the future if some technological and medical barriers can be removed prop-
erly. A promising working concept is to use AI to ånish most tedious and high-duty 
work while still allowing the human surgeon to interfere and supervise the AI for a 
more responsible surgical result. Thus human’s higher intelligence and machine’s 
artiåcial intelligence can be both fully utilized.
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Future Trends: AI × Robot

Renáta Levendovics, Tamás Levendovics, and Tamás Haidegger

Abstract Robotic surgery has become part of the clinical practice and an exten-
sively studied research domain. Extending the traditional concept of image guid-
ance, capsule, continuum, and microrobots and the dominating robot-assisted 
minimally invasive surgery (RAMIS) systems support the work of the surgeons. 
The global-scale adoption in the data age brings new challenges to researchers, 
engineers, ethics professionals, and legal regulatory experts. Even today, commer-
cialized systems are almost exclusively based on human-in-the-loop control or 
deterministic algorithmic solutions (such as registration techniques for image- 
guided technologies), and adaptive decision-making expert systems are lagging. 
Artiåcial Intelligence (AI) is one of the most studied research areas; learning from 
big data shows very promising results in the critical parts of surgery, such as vision, 
decision support, reasoning, diagnostics, and situation awareness. AI can reduce the 
complexity of intra-operative workæow, provide predictions on patient outcomes, 
and enhance efåciency in postoperative reporting. AI-based solutions can create a 
completely new sub-åeld, dubbed autonomous robotic surgery, where the systems 
can provide autonomy supported by proper decision-making and problem-solving 
capabilities. In this chapter, the most signiåcant, already advanced (research proto-
types and commercialized) surgical robotic systems (RAMIS, image-guided, coop-
erative, continuum, micro, and capsule robots) are introduced, along with the 
domain’s legal and ethical considerations. The most thoroughly studied research 
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topics are introduced based on the current global trends, highlighting the AI-based 
approaches having the highest possible impact on the clinical practice. Additionally, 
future trends and challenges to tackle in AI-driven robotic surgery are presented.

Keywords Surgical robotics · Artiåcial intelligence · Automation of surgery  
Computer-integrated surgery · Robot-assisted minimally invasive surgery

1  Introduction

The history of surgical robotics started in the early 1960s—the US National 
Aeronautics and Space Administration (NASA) and the US Department of Defense 
Defense Advanced Research Projects Agency (DARPA) laid the foundations of 
telerobotic surgical systems [1]. Originally, their aim was to provide medical assis-
tance for astronauts or wounded soldiers during their remote missions. For this, 
teleoperated robots would have been used, operated from the Earth or from the more 
safety background. At the end of the Cold War, the technology was released for 
commercial purposes, the attention from telesurgery in space shifted to shorter- 
distance telesurgery solutions, and soon, the årst surgical robot prototypes received 
their Food and Drug Administration (FDA) clearances and entered the market [2].

The basic concept of computer-integrated surgery (CIS) can be åtted to the 
computer- aided design/computer-aided manufacturing (CAD/CAM) paradigm 
known from the manufacturing industry, which involves the data–model–plan–exe-
cution–evaluation circle, where surgical robotics takes the most important role in 
the execution step [3, 4] (Fig. 1). The evolution of advanced information sources 
mainly images (such as endoscopic, computed tomography, magnetic resonance 
imaging, etc.) and the development of robotic devices led to the concept of 

Fig. 1 AI-based surgical CAD/CAM model, based on the original model by Taylor et al. [3]. AI 
can support computer-integrated surgery in every phase in the future (see Chapters “Development 
of AI Analysis Platform—Smart Cyber Operating Theater (SCOT)—For Medical Information in 
Neurosurgery”, “Deployment of Smart Cyber Operating Theater- Based Digital Operating Room to 
a Mobile Operating Theater”, “Surgical Processing Models”, and “Semantic Data Modeling”)
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robot- assisted or robot-executed surgeries. However, against the everyday terminol-
ogy, surgical robotics does not necessarily mean high-level automation: there are 
devices, which only perform low-level, assistance-based automation, such as the 
market leading da Vinci surgical system (Intuitive Surgical Inc., Sunnyvale, CA). 
Advanced image-guided surgical systems, such as CyberKnife (Accuray Inc., 
Sunnyvale, CA), can perform high-level autonomy (see Sect. 2) [5].

In most of the cases, the pre-operative and intra-operative surgical planning in 
CIS is based on the human operator; however, with autonomous image segmenta-
tion, registration, classiåcation, and diagnosis techniques, the accuracy can be 
increased, and the workload of the surgeon can be decreased [6] (Fig. 1). In the case 
of implementation, autonomy, augmented reality (AR)/virtual reality (VR), track-
ing, navigation, and robotic control can be added values in the future [7, 8]. For the 
future CIS concept, the intra-operative evaluation might include decision support, 
intelligent re-planning, data acquisition, and image processing steps. The post- 
operative analysis can be extended with autonomy assessment, motion analysis, and 
autonomous surgical skill assessment. AI is the ability of a digital computer or 
computer-controlled robot to perform tasks commonly associated with intelligent 
beings. The term is frequently applied to the project of developing systems endowed 
with the intellectual processes characteristic of humans, such as the ability to rea-
son, discover meaning, generalize, or learn from past experience [9] (see Chapter 
“Introduction/Deånition of “AI Surgery””). With advanced AI approaches, higher 
accuracy can be achieved in surgical robotics, which can improve patient safety [10] 
(see Chapter “Development of AI Analysis Platform—Smart Cyber Operating 
Theater (SCOT)—For Medical Information in Neurosurgery”). In this chapter, 
commercialized and research projects are introduced in the åeld of surgical robot-
ics, highlighting the AI-based components, the legal and ethical considerations, and 
the future directions of research [11–14].

2  Autonomy in Surgical Robotics: The Present 
and the Future

Autonomy is considered as a fundamental component of robots, yet it is one of the 
hardest terms to de�ne, assess, and regulate [5]. The autonomy in surgical robotics 
was deåned by expert surgeons and engineers, which follows a six-level scale, simi-
lar to autonomy levels in the case of self-driving cars (Fig. 2). Levels of autonomy 
(LoAs) of surgical robots are the following:

LoA 0: No autonomy
LoA 1: Robot assistance
LoA 2: Task-level autonomy
LoA 3: Supervised autonomy
LoA 4: High-level autonomy
LoA 5: Full autonomy
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Fig. 2 Levels of autonomy (LoAs) in robotic surgery [5]. The six-stage classiåcation follows the 
ISO/IEC standardization framework, determining LoA based on the human versus robotic func-
tions of the system

In the case of LoA 0, during the intervention no active robotic equipment is used; 
thus it may be considered identical to a nonrobotic case. LoA 1 means that the surgi-
cal robot performs only speciåc, low-level functions. Teleoperation, tremor ålter-
ing, and abrupt motion åltering belong to LoA 1, such as the market dominating da 
Vinci surgical system (Sect. 3.1). LoA 2 is where the robotic system performs tasks 
and subtasks autonomously, such as endoscope handling, needle insertion, suturing, 
etc. AutoLap autonomous endoscope-handling robot (developed by the Medical 
Surgery Technologies Ltd.) represents LoA 2 with visual servoing for MIS opera-
tions. LoA 3 denotes the level of supervised autonomy, where the system can auton-
omously complete a large section of a surgical procedure and make low-level 
cognitive decisions. Situation awareness (the perception of the elements in the envi-
ronment within a volume of time and space, the comprehension of their meaning, 
and the projection of their status in the near future [15]) is a key factor at this level 
since human oversight is necessary. For LoA 3, TSolution-One (formerly 
ROBODOC, THINK Surgical Inc., Fremont, CA) total knee arthroplasty image- 
guided surgical system is a good example, which is introduced in Sect. 3.2. LoA 4 
means the high-level autonomy, where the robotic system executes complete proce-
dures based on a pre-operative surgical plan, approved by a human operator, while 
the human has only the possibility to abort the procedure. The key difference 
between LoA 3 and LoA 4 is that at LoA 4, the robotic system must be able to ånish 
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the procedure even if the human operator fails to respond appropriately to a hando-
ver request even if the system understands that the conditions changed, allowing 
only suboptimal performance [5]. The typical commercially available example for 
LoA 4 is the CyberKnife stereotactic radiosurgery system. CyberKnife uses a linear 
accelerator to deliver high-energy X-rays or photons used in radiation therapy. 
CyberKnife moves around the patient to deliver the right amount of radiation and to 
minimize the radiation exposure of healthy tissues. CyberKnife is an image-guided 
robotic system, where the treatment plan, the execution, and patient motion com-
pensation are autonomously performed. In the case of LoA 5, there is no need for 
human supervision; cognitive abilities of the robotic system allow for adapting to 
every situation and environment. Till now, there is no commercially available 
robotic system which reached LoA 5 level [5, 16–18]. Autonomy can be an added 
value in the future of robotic surgery, and AI can be a basis of it. AI-based surgical 
planning can involve data-based, autonomous outlining the surgery with intelligent 
computer vision, data science, and AI-based robotic motion planning techniques. AI 
can also play a role in the subtask automation, such as in RAMIS. In that case, AI 
can be a part of reasoning, decision support, endoscopic image processing, and situ-
ation awareness.

3  Robotics Approaches in CIS: Control Types

3.1  Human-in-the-Loop Surgical Robots

For soft tissue manipulation, the most typical approach is the human-in-the-loop 
control, i.e., teleoperation, which leaves the surgeon in the control loop. Teleoperation 
is mainly used in robot-assisted minimally invasive surgery (RAMIS). Undoubtedly, 
the most successful surgical robotic system is the da Vinci surgical system (dVSS) 
with over 9000 clinical devices used in hospitals (Fig. 3). DVSS is a teleoperational 
RAMIS system; the human operator is always in the control loop, which means 
robot assistance (LoA 1) in autonomy without any cognitive functions or decision- 
making from the robot [19]. However, dVSS can help with tremor åltering, preci-
sion, ergonomics, and 3D vision. Since dVSS patient-side arms do only what the 
surgeon does at the surgeon-side console, surgeon’s actions can be recorded with 
image and kinematic data, which can lead to AI-driven surgical skill assessment, 
automation, and advanced decision-making support. There are other commercially 
available and ready-to-launch RAMIS platforms, such as the Senhance Surgical 
Robotic System, the Bitrack, the Versius, the Mantra, etc., (Fig. 3), but until now, 
these systems’ commercial/clinical impact has remained at low level [20].
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Fig. 3 Commercialized, ready-to-launch, and advanced research prototype robotic surgical sys-
tems along the three main control approaches (teleoperational, cooperative, image-guided)(a) Da 
Vinci Xi, (b) CyberKnife, (c) TSolution-One, (d) Senhance Surgical Robotic System, (e) iSYS/
Micromate/Stealth autoguide robot, (f) Eigen ARTEMIS, (g) Revo-i, (h) Neuromate, (i) Mako, (j) 
Hugo RAS system, (k) Versius, (1) da Vinci SP

3.2  Image-Guided Surgical Robots

CIS is based on a priori information, and the most important input information is 
usually the set of medical images of the patient. The improvement of medical imag-
ing provided the basis of the image-guided techniques, which resulted more accu-
rate organ targeting, more safety, and better patient outcome [21]. Image-guided 
robotic systems are guided by pre-operative and/or intra-operative images (most 
commonly, computed tomography (CT), magnetic resonance imaging (MRI), æuo-
roscopy, ultrasound, or RGB). For image-guided interventions, real-time, intra- 
operative tracking (deåning the pose) of the surgical tools is crucial. It requires 
tracking techniques, such as optical (with passive or active markers), 
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electromagnetic, or other modalities [22]. For image guidance, the coordinate sys-
tems employed by the controller (patient, navigation system, tool, etc.) have to be 
registered to the physical surroundings. Since the pose of the patients and tools can 
be calculated, thus with proper robotic devices and surgical plan, image-guided 
procedures can be automated on a task or subtask level, and the human operator can 
supervise the intervention in the meantime. TSolution-One is a good example for 
the image-guided surgical device that is commercially available since 2008 for total 
knee and hip replacement. It relies on a pre-operative CT scan and adequate surgical 
plan to implement bone drilling with a very high accuracy [5, 23] (Fig.  3). 
Furthermore, LoA 4 CyberKnife is an image-guided surgical robotic system as well 
(Sect. 2).

3.3  Cooperatively Controlled Surgical Robots

Cooperative robotic systems implement a speciåc teleoperation control paradigm 
(so-called shared control or hands-on surgery), where the surgeon and patient side 
devices are identical [2]. The surgeon always has physical contact with the surgical 
system, but the robotic device can support the surgeon with special features and 
effectors. In the case of cooperative control, the human operator remains in the con-
trol loop. This can help with compensation of hand tremor, which can increase the 
precision and decrease the workload on the surgeon [24]. Furthermore, additional 
functions can be implemented in cooperative control mode, such as virtual åxtures 
(spatial boundaries), which can help avoid restricted areas based on deåned pre- 
operative and intra-operative safety zones. Cooperative systems can support micro-
surgical cases and the orthopedic surgery. A commercially available cooperative 
robotic system is the MAKO Rio (Stryker Inc., Kalamazoo, MI), which combines 
image guidance and cooperative approaches for total and partial knee replacements 
(Fig. 3). In the case of cooperatively controlled surgical robots, data-based features, 
such as autonomously restricted areas (virtual åxtures) and autonomous subtask 
co- execution, can mean added safety with heavily relying on AI in the future.

4  Increasing Accuracy, Decreasing Invasiveness: Capsule 
Robots, Microrobots, Continuum Robots

The discussed commercially available robotic approaches (teleoperation, image-
guided robots, and cooperative systems) typically require large spaces in the operat-
ing room and use rigid tools with functional articulated devices [21–23]. Minimally 
invasive procedures are available for many surgical interventions; however, there 
are organ targets that cannot be easily reached by these rigid, large-scale robotic 
devices. For MIS, minimizing the size or the rigidity of the tools/systems/devices is 

Future Trends: AI × Robot

https://pezeshkibook.com



184

necessary. To achieve this, capsule robotics, microrobotics, and continuum robotics 
have been developed. On the other hand, surgical robots are now parts of the clinical 
practice, advanced devices are on the market, and just a few from the mentioned 
devices are commercially available.

4.1  Capsule Robots

Capsule robotics, which originally aims at inspecting the gastrointestinal tract in a 
minimally invasive manner without wires, holds a great prospect in diagnostics and 
treatment methods. It is a well-known technique to collect endoscopic images with 
a small, swallow-able device by a wide-angle camera, but usually these devices are 
passive (their movement is based on the peristaltic of the gastrointestinal tract) and 
do not implement adaptive or cognitive functions; however, there is a need to see 
more anatomy and be less invasive [25]. The actuation of these devices can be dif-
åcult due to the size of a capsule robot (typically 24 mm x 11 mm). In the literature, 
two main approaches for capsule robots can be found: onboard and magnetic actua-
tion. Onboard actuation employs very small locomotion mechanisms (legs, wheels, 
crawling systems), and it can be very challenging to develop these in miniature 
sizes, mainly because of their power supplies. In the case of magnetic actuation, the 
swallow-able devices can be actuated by an externally generated magnetic åeld 
(permanent magnets or electromagnets). This approach can decrease the size and 
complexity of the device; however, it requires complex control approaches due to 
the nonlinear properties of the magnetic åeld, which can be a target in AI applica-
tions. In this case, it is critical to know the pose of the device to plan the magnetic 
force and torque. Commercially available example for active capsule robots is the 
NaviCam (AnX Robotica, Plano, TX), which received FDA approval in 2020. 
NaviCam is a magnetically actuated capsule endoscopy system for visualizing the 
desired anatomy of the gastrointestinal tract. According to Dupont et al., the future 
of capsule robotics may involve intelligent magnetic control, multimodal imaging, 
and wireless power transfer [25]. AI solutions can be parts of capsule robots’ cogni-
tive functions, intelligent motion, and adaptivity for diagnostics and treatment in a 
miniature scale soon [26].

4.2  Microrobots and Nanorobots

Microrobotics employs microscopic-scale automated solutions for diagnostics and 
treatment. Capsule robotics requires very small size solutions, but even those can be 
too large for the minimally invasive treatment of the circulatory system, the urinary 
tract, the eye, or the neural system [27–29]. Micro-scale technology solutions are 
still challenging due to the speciåc physical effects, such as æuid viscosity and sur-
face effects. The movement of these miniature devices can be achieved by 
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piezoelectric motors or external magnets with a swimming-like motion in æuids, but 
battery technology is not applicable in this scale [30]. Targeted therapy, material 
removal (ablation and biopsy), controllable structures, and telemetry can be the 
future of microrobots according to Nelson et al. [27]. Adaptivity, cognitive func-
tions, and decision-making in the case of microrobots can be implemented in the 
future, especially in case the microrobot takes active part in the surgery [31]. 
Nanorobots are planned to target individual cells, and many proposed nanorobots 
are more like pharmaceuticals than machines, utilizing concepts from synthetic 
biology and requiring large numbers of them to complete a task; however, they are 
still in theoretical phase [27].

4.3  Continuum Robots

Redundant robots have more degrees of freedom (DoF) than necessary to execute a 
kinematic task. Continuum robots achieve extreme redundancy with inånite number 
of DoF, which means their kinematic structure can change its shape along its length, 
so it can adapt to different, complex environments where conventional robotic sys-
tems cannot, which could be a great beneåt in medical approaches [32]. Continuum 
robots can be employed in the following interventions:

• Neurosurgery: intracerebral drug delivery, intracerebral hemorrhage evacuation.
• Otolaryngology: functional endoscopic, sinus surgery, transnasal skull base sur-

gery, throat surgery.
• Cardiac surgery: percutaneous intracardiac surgery, robotic catheters for elec-

trophysiology, robotic catheters for cardiac surgery.
• Vascular surgery: treatment of angioplasties, aneurysms, embolization.
• Abdominal interventions: percutaneous interventions.
• Urology: transurethral surgery, handheld robot for transurethral prostate surgery.

Examples for continuum robotic systems include the ones for bronchoscopy as 
Monarch (Auris Health Inc., Redwood City, CA, USA) and Ion (Intuitive Surgical 
Inc.) platforms [33]. According to the literature, there are six main technical chal-
lenges of continuum robots: instrumentation, visualization, OR integration, human- 
machine interaction, shape, and force sensing [25].

5  Legal and Regulatory Considerations of Surgical Robots

The diversity of surgical robots makes the standardization of the domain extremely 
difåcult [5]. Industrial robots are deåned by ISO 8373:2015 as programmed actu-
ated mechanism with a degree of autonomy, moving within its environment, to per-
form intended tasks, and a service robot was deåned as a robot that performs useful 
tasks for humans or equipment excluding industrial automation applications. Since 
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the da Vinci surgical system employs only teleoperation control, it does not belong 
to the above deåned systems. This nomenclature issue has been addressed with a 
more recent deånition of robots: A robot is a complex mechatronic system enabled 
with electronics, sensors, actuators, and software, executing tasks with a certain 
degree of autonomy. It may be pre-programmed, teleoperated or carrying out com-
putations to make decisions [34]. Nevertheless, authorities consider and regulate all 
medical devices according to the medical device standards. The IEC 60601-1 
Medical electrical equipment standard and the 93/42/EEC Medical Devices 
Directive are applicable to all surgical robotic systems with a “medical intended 
use.” In recent decades in the European medical legislation, the Regulation (EU) 
2017/745, Medical Device Regulation (MDR), which came into force in May 2021, 
forms the change. The new regulation increased the safety-related expectations and 
the requisite documentation for certifying medical devices, disproportionately 
affecting medical robots [4]. ISO/IEC deåned the following domains for medical 
robots: rehabilitation robots, neuro-rehabilitation robots, assistive/daycare robots, 
nursing/rounding robots, invasive/surgical robots (endoscopy, biopsy), and diagnos-
tic robots. However, the boundaries of these domains are still not deånite. In 2018, 
a new standardization working group was launched, IEEE P2730 Standard for 
Classiåcation, Terminologies, and Deånitions of Medical Robots, with the scope to 
“specify the categories, naming, and deånition of medical robots”. The more recent 
IEEE 7007 Ontological Standard for Ethically Driven Robotics and Automation 
Systems is dealing with ethical considerations for robotic systems, which can sup-
port AI-based products as well. The development of robotic technologies can have 
an important role in efforts to achieve the United Nations’ (UN) Sustainable 
Development Goals (SDGs) as well [35, 36].

6  AI × Surgical Robotics

6.1  Rationale

In medical technologies, clinical outcome is the most important consideration [29, 
37]. Special attention is needed when the technological approach is not practical 
and hard to use and results in great stress or workload of the patient and/or to the 
doctor. The general goal of robotic surgery and especially of the new, intelligent 
approaches in the medical research is to make surgery safer and to achieve better 
clinical outcome with accuracy, repeatability, intelligent decisions, etc. Surgery – in 
case it is performed by a human operator – gives great fatigue to the surgeon; it can 
be stressful, and the human-related limitations (stability, dexterity, etc.) may cause 
problems during the interventions [38]. The main promise is that AI-based tech-
nologies will exceed these human-related limitations, making appropriate decisions 
with stability, dexterity, accuracy, and repeatability, without dealing with stress, 
situation awareness, or fatigue. For this, a huge amount of data is necessary, which 
can be provided along the principles of Surgical Data Science (SDS).
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6.2  AI × Surgical Robotics State of the Art

AI-based technological approaches form the biggest trend now; however, in com-
mercial surgical robots, these features have not appeared widely yet. A good exam-
ple is the market dominating RAMIS systems that leave the surgeon in the control 
loop or the IGS systems that rely on a surgical plan created by a human operator. On 
the other hand, in research phase, there are projects and publications reported daily 
dealing with AI-based surgical support. In this section, we introduce the most 
important research domains in AI-based robotic surgical solutions, involving surgi-
cal automation, skill training and assessment, gesture/workæow segmentation, and 
surgical tool segmentation. Since RAMIS dominates in the surgical robotics market, 
and other robotic AI approaches mainly focus on image processing [39–44], in this 
section, RAMIS AI-based solutions are presented. In Table 1, the publications on 
RAMIS AI-based solutions are summarized based on novelty and/or citation met-
rics, categorized by the utilized AI approach (supervised learning, unsupervised 
learning, learning by demonstration, and reinforcement learning).

6.3  RAMIS Databases and Data Collection Approaches

The well-known key to AI is data – without the proper amount of data, AI in surgery 
will not be applicable. Furthermore, data is needed for validation as well. Image 
databases, RAMIS kinematic databases, and skill and gesture datasets are widely 
used in the research domain to train and test AI algorithms. For RAMIS data collec-
tion and research in general, the da Vinci Research Kit (DVRK) was introduced by 
the Johns Hopkins University and partners with the support of the Intuitive Surgical 
Inc. DVRK involves open-source hardware and software elements and provides 
complete read and write access to the da Vinci device’s arms, video stream, etc. The 
DVRK community is a relatively small but growing group, including 40 research 

Table 1 AI examples in RAMIS research, based on novelty and/or citation metrics

Target task Ref.

Unsupervised learning Tool segmentation
Skill assessment
Gesture segmentation

[45–48]

Supervised learning Tool segmentation
Skill assessment
Gesture segmentation
Automation

[49–57]

Semi-supervised learning Force estimation [58]
Learning by demonstration Automation [59–61]
Reinforcement learning Automation

Skill training
Gesture recognition

[60, 62–65]
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groups [66]. The annual MICCAI conference of the Medical Image Computing and
Computer Assisted  Intervention  (MICCAI)  Society  presents  every  year  a  robotic
surgical  tool  segmentation  challenge  (Endoscopic  Vision  Challenge  Robotic
Instruments, “EndoVis,”  https://endovis.grand-challenge.org/), providing a dataset
with labeled surgical tools ground truth. The MICCAI EndoVis dataset consists of
ten sequences of abdominal porcine procedures recorded by da Vinci Xi systems.
The stereo image data with the ground truth labels include seven different robotic
surgical instruments: the Large Needle Driver, the Prograsp Forceps, the Monopolar
Curved Scissors, the Cadiere Forceps, the Bipolar Forceps, the Vessel Sealer, and
additionally a drop-in ultrasound probe [67]. Synthetic MICCAI dataset (created by
the  University  College  London,  https://www.ucl.ac.uk/interventional-surgical-
sciences/)  was  recorded  with  the  DVRK.   In  Synthetic  MICCAI,  da  Vinci’s
EndoWrist  Large  Needle  Drivers  were  used  to  perform  a  surgical  movement.
Synthetic MICCAI contains the same surgical movements with ex vivo and green
screen background as well. Tool segmentation ground truth was generated with the
green screen  elimination. Synthetic MICCAI contains 15 scenarios with different
tool movements; each scenario contains 300 video frames [68]. JIGSAWS (JHU-ISI
Gesture  and  Skill Assessment Working  Set  https://cirl.lcsr.jhu.edu/research/hmm/
datasets/jigsaws_release/)  was  created  through  a  collaboration between  the  Johns
Hopkins University and Intuitive Surgical, Inc. It is a complex RAMIS skill assess-
ment dataset, widely used for testing endoscopic image-based and kinematic data-
based  surgical  skill  assessment  methods  [69].  JIGSAWS  was  captured  using  the
dVSS, with eight surgeons, having different skill levels (expert, intermediate, and
novice)  while  performing  well-known  surgical  training  tasks  (knot-tying,  needle
passing, and suturing). JIGSAWS contains not only the kinematic and stereo video
data but the skill level of the surgeons and the gesture annotations as well. While
JIGSAWS’s video data is available, it is not annotated with the instrument segmen-
tation  ground  truth.  These  databases  with  reduced  complexity  and  ground  truth
labels åt AI solutions and needs.

6.4  Subtask Automation in RAMIS

Since RAMIS operates with soft tissues, automation in this domain can be extremely
difåcult due to the constantly changing surroundings. This time, on the market there
is no autonomy over LoA 1 in RAMIS, but subtask automation is widely researched
[5]. For RAMIS automation, workæow and movement hierarchical decomposition
were  introduced  [17].  In  order  to  understand  the  key  motions  and  ontologies  in
RAMIS in a machine-readable format, the main levels of surgical workæow were
deåned as the following:

1. Operation: the complete invasive part of the intervention (such as laparoscopic 
cholecystectomy).

2. Task: well-deåned surgical activity with a high-level goal (exposing the Calot’s 
triangle.
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 3. Subtask: activity segments to achieve landmarks of tasks (e.g., blunt 
dissection).

 4. Surgeme: atomic unit of a surgical activity (e.g., approach the tissue, perform 
dissecting motion).

 5. Motion primitive: machine-readable motion patterns (e.g., open the dissector).

RAMIS automation research is mainly focusing on surgical subtask automation, 
which belongs to partial/conditional automation, where the automation of surgemes 
and motion primitives are necessary. However, the workæow of RAMIS contains 
subtask elements, where choosing the proper subtask can be extremely difåcult 
since it can be critical in the patient outcome. These subtasks can be monotonous 
and time-consuming; thus, their automation could decrease the workload of the 
surgeon as well.

A typical example for this is the årst RAMIS subtask automation research, auto-
mating multilateral debridement and shape cutting by the UC Berkeley AUTOLAB 
and the Center for Automation and Learning for Medical Robotics (CAL MR) [70]. 
In this subtask automation research, a learning by observation approach was 
employed: human motion patterns were recorded and segmented, and then those 
patterns were used to generate robot trajectories during autonomous implementa-
tion. While a surgical phantom was used with traditional image processing algo-
rithms, the project was mainly focused on robot motion generation. In another work 
of the research group, autonomous multilateral tumor resection based on palpation 
was also done in a phantom environment [71]. For this subtask’s automation, a state 
machine was compiled. In another work of the group, the needle size, trajectory, and 
control parameter usage were optimized using sequential convex programming for 
automating suturing. Blunt dissection was automated by the IROB Center, Obuda 
University, based on stereo image processing and motion primitives on speciåc sili-
cone phantom [72]. This research was validated on ex vivo environments as well. 
Soft tissue retraction [73] and peg transfer automation were also done by our 
research group [18].

The årst 10 years of surgical subtask automation research focused mainly on 
traditional, deterministic approaches (except learning by observation-based studies) 
and lower-level automation. However, recent works showed promising results in AI 
usage for RAMIS subtask automation, even in higher-level task automation. A peg 
transfer solution was introduced [57], where Deep Recurrent Neural Network was 
used for automation. This solution resulted in very high (94.1%) success rate. In 
2022, Johns Hopkins University published their work on årst autonomous anasto-
mosis in gastrointestinal surgery by Smart Tissue Autonomous Robot (STAR) on 
porcine. Nevertheless, the robotic anastomosis outperformed the human operators 
in terms of suture quality. However, this solution proposed high-level automation on 
soft tissues; it was not based on AI [74].
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6.5  RAMIS Instrument Semantic Segmentation

Surgical tool segmentation is one of the most well-studied research domains in 
RAMIS, and while it does not directly relate to robotic task execution, it is a critical 
component for intelligent robotic approaches. Robotic surgical tool semantic seg-
mentation and the knowledge of the position of the instruments are essential steps 
in RAMIS automation, navigation, autonomous decision-making support, workæow 
analysis, and autonomous skill assessment. Neural networks and deep learning 
methods are hot topics in AI-based image processing since the image features are 
not determined by a human but selected autonomously by the network [75]. It is 
well known that deep neural network (DNN)-based solutions’ large amount of 
(sometimes labeled) image data is crucial for training. Furthermore, tool segmenta-
tion must deal with very different surgical tools, changing in light, environment, 
blood, smoke, reæections, etc. while avoiding overåtting.

Most of the RAMIS tool segmentation methods have been validated on the 
MICCAI dataset. Mohammed et  al. proposed a hybrid deep CNN-RNN auto 
encoder-decoder method for tool segmentation and resulted 93.3% accuracy on this 
dataset [49]. ToolNet is a DNN-based semantic segmentation approach, which was 
the årst convolutional network architecture trained end to end for real-time seman-
tic segmentation of robotic surgical tools [50]. RASNet tracked surgical instruments 
using Reåned Attention Segmentation Network and achieved the state of the art 
with 94.65% mean Dice score [51]. Beyond DNN, other machine learning 
approaches provided promising results in robotic surgical tool segmentation, such 
as boosted decision trees, random forests, image data combined with kinematic 
data, and optical æow-based solutions [76].

While hundreds of scientiåc papers provide very promising solutions for RAMIS 
tool segmentation, DL-based approaches work typically well on known environ-
ment. Since the surgical environments can be very diverse, their adaptivity to differ-
ent environments means a signiåcant problem (just as for self-driving cars [15]). 
Since almost every tool segmentation is validated on the same dataset, these results 
can easily be compared, and the accuracy can be proven (against automation, which 
cannot be benchmarked easily [19]), but they have the same limitations as every 
other supervised learning approaches.

6.6  RAMIS Skill Assessment and Workæow Segmentation

To work with RAMIS (and MIS in general) is a hard task, which requires extensive 
training from surgeons. RAMIS skills involve not just technical skills (knowing the 
instruments, use the proper forces, depth perception, etc.) but non-technical skills 
(decision-making, situation awareness, dealing with stress, etc.) as well. Nowadays, 
in the clinical practice, surgical skill assessment is mainly based on expert-rating 
techniques, where a group of expert surgeons analyzes the procedure and gives 
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assessment scores based on speciåc criteria. Automating the assessment of surgical 
skills can help the understanding of the key human factors and can be important in 
quality assurance and personalized training. The wide employment of RAMIS sys-
tems supports the research of automated skill assessment since kinematic (and 
video) data are available; the motion of the surgeon can be analyzed easier [38].

Following AI-based endoscopic image segmentation, RAMIS video and kine-
matic data analysis with learning algorithms are the most studied area. These stud-
ies mainly focus on surgical skill classiåcation (expert/novice or expert/inter mediate/
novice) based on the JIGSAWS dataset, with kinematic and/or video data [77, 78]. 
Kinematic data-based skill classiåcation in RAMIS reached 100% accuracy in 
some cases; however, this high accuracy can be a challenge for 2D/3D endoscopic 
image-based approaches [54]. Most popular kinematic data-based solutions employ 
convolutional neural network (CNN) [79], principal component analysis (PCA) 
[53], k-nearest neighbors (k-NN) [53], logistic regression (LR) [46], and fully con-
volutional network (FCN) [80], while video-based solutions based on 3D CNN have 
also been presented [52, 76]. A work by Lajkó et al. [54] compared the accuracy of 
2D optical æow-based skill classiåcation with residual neural network (ResNet), 
CNN, LSTM, convolutional autoencoder, and frequency domain transformations 
with support vector machine (SVM), where the highest performing method was 
ResNet with 81.89%, 84.23%, and 83.54% accuracy for suturing, needle passing, 
and knot-tying, respectively.

As it was presented in Sect. 2, surgical tasks are built of surgical gestures 
(surgemes). Autonomous surgical gesture segmentation and analysis can lead to 
deeper skill understanding, surgeme-level skill scoring, and real personalized skill 
training. For gesture and maneuver recognition, supervised and unsupervised tech-
niques were also used: Autoencoder [56], RNN [55], LSTM [55], clustering [47], 
PCA [47], temporal clustering [48], Gaussian mixture models (GMM) [48], k-NN, 
and SVM [81] have been reported.

6.7  Future Trends in AI × Robotic Surgery

Artiåcial intelligence’s rebirth revolutionized modern science and technology [82]. 
Learning and reasoning from data can be a very promising alternative to classical, 
deterministic algorithms. The goal of AI-based surgical robotics is to improve 
patient outcome: to evaluate all relevant sensory inputs and to access a database 
detailing how to achieve the surgical goal safely [1]. DNN, which is a dominating 
technique, can deåne the key features of the data autonomously. Nevertheless, AI 
needs data in quality and quantity and, in some cases, labeled data. Robotic surgical 
data, such as images and kinematic and tactile data, serve as input for such tech-
niques, but since the medical market domain is very conservative, AI has not been 
introduced widely yet, mostly only in research projects and product concepts 
[83–88].
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First, the technological added value will be validated; patient outcome and prac-
ticality are crucial in medical device developments. As a possible future trend, AI 
might be used instead of deterministic methods for advanced surgical planning, 
execution, evaluation and proper decision-making, and error handling. One main 
added value for robotic surgery can be the autonomy [5, 25, 89]. As it was pre-
sented, there are commercialized systems, which can reach medium and high auton-
omy, but full autonomy is still an open challenge largely because of the complexity 
of managing adverse medical events. Additional beneåts can be precision, repeat-
ability, and speed. Autonomous surgical skill assessment and gesture segmentation 
during procedures can lead to personalized training and assessment [87]. In the 
non-technical skill domain, AI-based approaches can support decision-making and 
situation awareness and can decrease the workload on the surgeon. In the future, 
autonomous subtasks and camera handling, pre-operative planning, motion com-
pensation for image-guided techniques, and intelligent decision-making possibly 
via autonomous phase recognition can be parts of the clinical practice. On the other 
hand, technological challenges are still unsolved: since data-driven techniques rely 
on data, these data should be proper and as general as possible for adaptivity. 
However, ethical, legal, and cost considerations can be signiåcant challenges, even 
if the technical solutions are capable for surgical automation/support [90].

Safety is critical in this research domain, but none of the currently accepted 
methods focus directly on the autonomous capabilities of the robot, as a primary 
source of hazard. AI for medical systems requires well-deåned criteria for valida-
tion. According to the data-driven research framework for TAI (DaRe4TAI) [91], a 
trustworthy AI will have the following properties:

• Beneåcence.
• Non-maleåcence.
• Autonomy.
• Justice.
• Explicability.

AI ethics should also be considered in autonomous surgical robotic functions, 
such as the FAST Track Principles (Fairness, Accountability, Sustainability, and 
Transparency) [92]. From the regulatory point of view, MDR already requires the 
manufacturers to store and disclose their datasets employed with their AI-based 
solutions.

The recently introduced Surgery 4.0 concept means the seamless integration of 
medical decision support systems, imaging, and automated execution [18]. Focusing 
on this topic, Verb Surgical (Mountain View, CA), the 2015 joint venture of Verily/
Alphabet Inc. (Mountain View, CA) and Johnson & Johnson (New Brunswick, NJ), 
årstly claimed to develop a Surgery 4.0 compatible robotic system, which employs 
advanced vision and robotic tools with machine learning. However, the system has 
never been introduced publicly. Recently, Vicarious Surgical (Waltham, MA) also 
introduced AI algorithms and Extended Reality capabilities into the surgical work-
æow [93], and other competitors are on the horizon [20]. It is also worth mentioning 
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Fig. 4 The 2024 version, generation 5 of the da Vinci surgical system. It features improved accu-
racy and precision, advanced force sensing, expanded computing power and advanced data capa-
bilities, complete workæow support, and greater surgeon comfort. (Image: courtesy of Intuitive)

that the latest generation of the dVSS, the da Vinci 5 features 10,000 times more 
computational capacity on board than the da Vinci Xi, primarily to run its enhanced 
simulator and to accommodate AI-based decision-support systems (Fig. 4).

Nevertheless, recent surveys found that even in less technology-dependent soci-
eties, the prevalence of robot surgery is advancing, and there is a growing trust in 
AI-driven healthcare [94, 95].

7  Conclusion

AI has become an integral part of many research projects and commercialized prod-
ucts. However, in the medical domain, it has not been applied at signiåcant measure 
yet, mainly because of the ethical and legal issues, but the narrowing technological 
gaps have remained limiting factors as well. In surgical robotics, most successful 
products leave the human in the control loop or provide functions at lower levels of 
autonomy. Nevertheless, high level of autonomy has already been introduced in 
radiosurgery, yet full autonomy is still out of reach. AI methods have proven to be 
powerful tools in robotic surgical research (such as in subtask automation, surgical 
skill assessment, gesture segmentation, phase recognition, and mainly image pro-
cessing), but these techniques have not been generally introduced to the market yet. 
In the future, AI-based pre-operative planning, autonomous execution, patient 
motion compensation, decision-making support, and autonomous evaluation will 
become parts of the clinical practice, which can signiåcantly improve the patient 
outcome and decrease the workload of the surgeon, but apart from technical 
advancement, this also requires great standardization effort from the community.
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Future Trend: Telemedicine Using 5G
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Abstract The åfth-generation mobile communication system (5G) with its high 
speed/high capacity, ultra-low latency, and massive device connectivity characteris-
tics has expanded worldwide. Through its innovative technologies, the 5G network 
contributes not only consumer services but also industrial services. A medical åeld 
is one of the important industrial areas where the 5G network is expected to be 
effective. Studies and activities focused on telemedicine using the 5G network have 
been reported from various parts of the world. In this chapter, after presenting over-
seas cases, we introduce our solutions including advanced telemedicine using 
experimental and commercial 5G networks collaborating with partners such as uni-
versity hospitals and those in industry. To introduce the 5G network to telemedicine, 
accumulating technology toward advanced telemedicine and practical demonstra-
tions in a commercial environment are key to success. 5G technologies will become 
more sophisticated, and the next generation of mobile communication systems 
could further enhance telemedicine in the future.
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1  Fifth-Generation Mobile Communication System

The åfth-generation mobile communication system (5G) is the latest wireless com-
munication system following the third- and fourth-generation mobile communica-
tion systems (3G/4G). 5G has characteristics such as high speed/high capacity 
represented by enhanced mobile broadband, ultra-low latency represented by Ultra- 
Reliable and Low Latency Communications, and massive device connectivity rep-
resented by massive Machine Type Communications. The International 
Telecommunication Union-Radiocommunication sector discussed the vision of 
mobile communication systems and indicated future target requirements such as the 
maximum data transmission rate of 20 Gbps, multiple simultaneous connections of 
1,000,000 devices/km2, and low latency (1 ms) [1] as shown in Fig. 1.

In Japan, a commercial 5G network was launched in March 2020. 5G services 
for smart phones were launched in April 2019 in South Korea and in the United 
States [2]. As of March 2020, most countries excluding some areas such as Africa 
and the Middle East have invested in the 5G network, and 70 commercial 5G net-
works in 40 countries have been launched. About a year later, 144 commercial net-
works in 57 countries have been put into operation, and 5G services are available in 
the Americas, Europe, Asia, and Africa [3]. Although many people are still using the 
4G network, it is anticipated that the use of 5G will increase in the future.

5G network technologies are expected to be applied to industry as well as con-
sumer services. With the spread of mobile devices such as smartphones and tablets, 
the amount of communication data is increasing due to, for example, social network 
services and video streaming services. 5G technology enables the handling of a large 

Fig. 1 5G features and future target requirements

Y. Horise et al.

https://pezeshkibook.com



201

Fig. 2 NTT DOCOMO 5G cloud infrastructure

amount of data with low latency and provides a comfortable mobile communication 
environment for consumers. Moreover, since the 5G network offers guaranteed ser-
vices compared to previous generation networks that offer best-effort services, the 
possibility of 5G utilization in industry has emerged. 5G technology yields new 
value of various types and addresses social issues. It enables industrial innovations 
such as the transmission of 4 K/8 K high-deånition video and realistic images utiliz-
ing artiåcial reality/virtual reality, autonomous driving, and telemedicine.

Toward the introduction of 5G to industry, NTT DOCOMO commercialized the 
docomo Open Innovation Cloud (currently docomo MEC) shown in Fig. 2 in March 
2020, which provides cloud services with low latency and high security through a cloud 
infrastructure within the NTT DOCOMO network employing Multi-access Edge 
Computing technology [4]. As an optional service, Cloud Direct (currently MEC 
Direct) was released in June 2020, which enables low-latency and high-security com-
munication via 5G with communication- route optimization by connecting the cloud 
infrastructure and connected devices. Since it is a closed network separated from the 
Internet, cloud services in a high-security communication environment can be provided.

2  Expectations for Introducing 5G to Telemedicine

Telemedicine promotes healthcare and enables the medical practice through com-
munication devices and services and provides medical services to people in a larger 
area by making effective use of limited numbers of doctors and hospitals. Especially 
in Japan, regional disparities in medical care are a serious issue. Depopulation and 
aging are problems that are accelerating, and medical resources are limited in rural 
areas. Meanwhile, medical facilities and doctors providing advanced medical care 
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are concentrated in urban areas. These issues further exacerbate problems such as 
the decrease in educational opportunities for young doctors in rural areas and the 
increase in doctor working hours in urban areas. Considering these issues, telemedi-
cine is expected as a way to address the shortage or uneven distribution of doctors 
and medical facilities. Moreover, the SARS-CoV-2 or coronavirus disease 2019 
(COVID-19) pandemic has been a trigger to accelerating the use of telemedicine.

Telemedicine is categorized into two main types: doctor to patient (D to P) and 
doctor to doctor (D to D). In the D-to-P conåguration, doctors perform medical 
examinations on patients in a remote setting using video and voice information 
through communication devices. On the other hand, in the D-to-D conåguration, 
experienced doctors or specialists collaborate with and support diagnosis or treat-
ment of doctors in remote locations. Remote surgical support and remote surgery 
have received attention lately, and these are regarded as advanced cases of D to D 
and D to P.

For remote diagnosis and treatment, sharing of medical data such as diagnosis or 
surgical images and patient information between locations is essential. Recently, 
high-deånition image equipment such as 4 K and 8 K has been introduced with the 
development of electronic technology, which means an increase in the amount of 
data trafåc. Considering telemedicine with a large amount of medical data sent in 
real time, 5G is expected to contribute and accelerate telemedicine by leveraging its 
high speed/high capacity and low-latency capabilities.

To introduce 5G technology to telemedicine, system evolution and accumulation 
of required technology in phases toward advanced telemedicine are necessary as 
shown in Fig.  3. As telemedicine advances, the amount of medical information  
will increase, and higher technical requirements for networks must be achieved.  
For example, in remote diagnosis support using ultrasound, patient information, 
ultrasound images, and communication information including video and voice are 

Fig. 3 Technical steps toward advanced telemedicine
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needed, and a delay of a few seconds may have little inæuence on the diagnosis. 
However, in remote robotic surgery using high-deånition surgical images and 
robotic control information, a delay of a few seconds could result in serious conse-
quences, and large amounts of data with low latency must be transmitted.

The 5G network is æexible in addition to having high capacity, low latency, and 
high security. 5G is easy to handle compared to wired networks and can be utilized 
anywhere if there is a 5G environment. Considering the above features, 5G is also 
expected to be applied to medical uses in depopulated areas and in disaster scenarios.

3  Trends in Telemedicine Using 5G

Medical åeld activities and demonstrations using the 5G network have been reported 
all over the world. In Spain, Lacy et al. reported 5G-assisted telementored surgery 
in 2019, in which surgeons in an operating room and the mentor in a remote location 
communicated in real time while sharing laparoscopic images via the 5G network 
[5]. Telementored surgery was performed in two surgical cases of laparoscopic high 
anterior resection and laparoscopic low anterior resection, and the latency time was 
202 ms and 146 ms, respectively. The transmission speed was approximately 100 
Mbps with no signiåcant signal loss. Based on the results, they indicated that the  
5G technology enables safe and efåcient complex surgical procedures using 
telementoring.

In China, Wu et al. conducted a pilot study of robot-assisted teleultrasound via 
the 5G network toward early imaging assessment during a pandemic such as 
COVID-19 [6]. Lung ultrasound, brief echocardiography, and blood volume assess-
ment were performed on four patients with conårmed or suspected COVID-19. The 
patients were located in two different cities, and each patient was diagnosed by 
ultrasound specialists located in two other cities. During the procedures, the data 
rates of the network were 930 Mbps in the downlink and 130 Mbps in the uplink 
with the network latency of 23–30 ms and jitter of 1–2 ms. The doctors mentioned 
that the 5G network contributed to smooth scanning using the robotic arm with low 
risk of exposure to COVID-19. Zheng et al. reported remote laparoscopic telesur-
gery at a distance of nearly 3000 km using the 5G network [7]. Using a domestically 
produced surgical robot called MicroHand developed by Tianjin University, four 
laparoscopic surgeries including left nephrectomy, partial hepatectomy, cholecys-
tectomy, and cystectomy were safely performed with the average network delay of 
264 ms. They reported on the feasibility of telesurgery and provided insights on the 
value of 5G, especially in areas where Internet cables are difåcult to lay or cannot 
be laid.

In the United States, the Department of Defense devised a full-scale plan for 
telemedicine applications using the 5G network to enable a joint medical commu-
nity to sustain its long-term economic and military advantage [8]. They have worked 
to develop several technical areas to help augment future telemedicine and medical 
training applications within the 5G environment. Five technical areas regarding 
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medical training using augmented reality (AR), telehealth, telerobotic surgery, 
remote integrated surgery using AR, and a mobile medic environment were initially 
selected. It is expected that the country-led activities will further accelerate 5G 
introduction into the medical åeld.

In the meantime, in Japan, Morohashi et  al. evaluated robotic teleoperations 
using a domestically developed surgical robot via a commercial network [9]. Two 
types of robotic teleoperations were performed between hospitals 150  km apart 
using guaranteed-type lines (1 Gbps, 10 Mbps, and 5 Mbps) and best effort-type 
lines. The mean glass-to-glass times were 92 ms and 95 ms for the guaranteed-type 
line and best effort-type line, respectively. Although the employed network environ-
ment was different from 5G, their results indicated the importance of the implemen-
tation of telesurgery using commercial communication networks. To actualize 
telemedicine in an early stage, evaluations are required in an environment that is 
close to practical use.

4  Telemedicine Initiatives Using NTT DOCOMO 5G

NTT DOCOMO has demonstrated remote diagnosis and remote medical examina-
tions using the 5G network in collaboration with various partners in D-to-D tele-
medicine since 2017. Using a 5G antenna for experimental use, we validated the 
effectiveness of telemedicine systems intended for clinical departments for com-
munity and emergency medicine. Furthermore, drawing on past experience, we are 
working on step-by-step experiments and demonstrations of advanced telemedicine 
systems using a commercial 5G antenna. In the following, we introduce some 
DOCOMO initiatives.

4.1  Telemedicine in Depopulated Areas

From 2017 to 2019, using 5G antennas for experimental use, 5G comprehensive 
demonstration tests led by the Ministry of Internal Affairs and Communications and 
demonstrations in collaboration with partners were conducted.

In Japan, the problems of depopulation and aging are progressing in rural areas, 
and there is a shortage of medical resources and services. To overcome these issues, 
we demonstrated remote medical examination between a rural clinic and an urban 
university hospital using an experimental 5G network in 2018.

A doctor in the clinic performed a medical examination on patients with the sup-
port from specialists in the university hospital. Five cases, including three dermatol-
ogy cases, one orthopedic case, and one cardiology case, were demonstrated. 
According to the clinical departments, as shown in Fig. 4 medical images for diag-
nosis such as a 4 K image for trauma diagnosis, an ultrasound image for internal 
disease diagnosis, and a magnetic resonance image (MRI) were transmitted as well 
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Fig. 4 5G telemedicine demonstration in a depopulated area

as voice information to the university hospital from the clinic via the 5G network. 
Since the 5G network enabled transmission of high-deånition medical images, the 
specialists commented that it was easier to judge the symptoms compared to those 
transmitted using a conventional remote system and they could conduct the medical 
examinations with the feeling as if they were beside the patients. The patients com-
mented that this method would be helpful for elderly people who often must travel 
more than 2 h into the city to visit the university hospital. Telemedicine in depopu-
lated areas will contribute to reducing the burden on doctors and patients and to 
improve the level of medical care in rural areas.

4.2  Mobile Smart Cyber Operating Theater

Surgical technology is evolving year by year, and forms of information utilization 
such as the Internet of Things and Artiåcial Intelligence (AI) have attracted atten-
tion in recent years. Since 2019 the Tokyo Women’s Medical University has led in 
the development of a state-of-the-art operating room (OR) called the “Smart Cyber 
Operating Theater (SCOT)” and has clinically applied it mainly to neurosurgery and 
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Fig. 5 Smart Cyber Operating Theater (SCOT) in Tokyo Women’s Medical University

is shown in Fig.  5. The SCOT comprises four elements: packaging, networking, 
informationizing, and robotizing. Although many different types of medical devices 
and equipment are installed in ORs, they are standalone and not linked to each 
other, especially between different manufactures. In the SCOT, various medical 
devices and equipment, such as a surgical microscope, surgical navigation system, 
biological monitor, and intraoperative MRI, are packaged according to the clinical 
departments and surgical cases. These are then networked, and the digital data are 
collected and accumulated in time synchronization using the dedicated middleware 
“OPeLiNK.” The intraoperative information is integrated as a strategy desk that 
supports decision-making by the surgeons to achieve a safe and highly accurate 
surgery (see Fig. 5). By sharing the strategy desk with a skilled doctor, the safety 
level can be further enhanced (please refer to Chapter “Deployment of Smart Cyber 
Operating Theater- Based Digital Operating Room to a Mobile Operating Theater” 
for more details on the SCOT). However, patients could not receive advanced medi-
cal care such as the SCOT without going to a hospital in an urban area.

To address this issue and to raise the level of medical care regardless of region, 
in collaboration with the Tokyo Women’s Medical University, we proposed the con-
cept of the “Mobile SCOT” which is a combination of the SCOT and 5G network. 
As shown in Fig. 6, the Mobile SCOT comprises a mobile treatment room in which 
the SCOT is installed in a vehicle and a mobile strategy desk that receives intraop-
erative information from the SCOT or the Mobile SCOT and supports the surgeon 
from a remote location. With the advantages of 5G, a large amount of data in the 
SCOT could be transmitted in real time and to provide advanced medical care any-
time and anywhere.

In October 2020, we conducted the årst demonstration of the Mobile SCOT and 
a commercial 5G network. As the årst step, demonstrations of remote diagnosis 
support using an ultrasound system were performed in two conågurations: between 
a medical ofåce in the university and a location approximately 15 km away and 
between the medical ofåce and a compound in the university. By using the com-
mercial 5G network and NTT DOCOMO cloud service, the ultrasound images in 
the Mobile SCOT were transmitted to a second console that could control the ultra-
sound system remotely in the medical ofåce, and audio data were transmitted in 
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Fig. 6 Mobile SCOT concept

both directions. Evaluation results of simulated practical cases of obstetrics and 
cardiology demonstrated the feasibility of the Mobile SCOT and the potential for 
remote diagnosis support in real time.

4.3  Remote Robotic Surgical Support/Remote Robotic Surgery

Remote robotic surgery is a highly advanced technique in telemedicine. Many sur-
gical robots have been developed thus far, and the da Vinci surgical system (Intuitive 
Surgical, Inc., CA, USA) is the most commonly used worldwide. The development 
of surgical robots has also progressed in Japan, which hosts a high level of industrial 
robotic technologies. In 2020, a commercial surgical robot system called hinotori™ 
was launched for the årst time in Japan by the Medicaroid Corporation, which is a 
joint company between Kawasaki Heavy Industries, Ltd., and the Sysmex 
Corporation. The hinotori™ system comprises an operation unit with compact 
robotic arms similar to human arms, an ergonomically designed surgeon cockpit, 
and a vision unit that produces high-deånition 3D images. These were developed in 
collaboration with Kobe University toward the actualization of precise and advanced 
surgeries. Although robotic surgery has become popular, it is concentrated in urban 
areas, and there is a large regional disparity in medical care. In association with this 
issue, there are concerns such as a decrease in the number of educational opportuni-
ties for young surgeons in rural areas and an increase in the working time of sur-
geons in urban areas. To overcome these hurdles, we have demonstrated cases of 
remote robotic surgery including remote support via the 5G network since 2020, 
under the framework of Kobe Vision for the Healthcare of Tomorrow initiative pro-
moted by Kobe City.
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Fig. 7 Remote robotic surgical support via commercial 5G network and cloud infrastructure

In the demonstration illustrated in Fig. 7, hinotori™ was connected between two 
locations via a commercial 5G network and NTT DOCOMO cloud service, and a 
mock surgery was performed by a surgeon in the cockpit in a remote location con-
trolling the operation unit. High-deånition surgical images and robot control infor-
mation were successfully transmitted in real time, and surgical operations such as 
blood vessel dissection, needle holding, and needle handling as well as basic opera-
tions such as grasping were achieved. We believe that this is the årst demonstration 
of remote robotic operation with a combination of a domestic commercial surgical 
robot and a commercial 5G network in the world. The surgeon who is well-versed 
in robotic surgical techniques gave a good evaluation of the remote robotic surgical 
operation and said that the system using the 5G network was potentially capable of 
performing remote robotic surgeries. He experienced improved æexibility because 
of the wireless communications and expected further development toward full-scale 
commercialization. Remote robotic surgical support and remote robotic surgery via 
the 5G network could deliver advanced medical care widely and could contribute to 
improving the education and working styles of surgeons through efåcient medical 
resources. This remote robotic surgery technology is also expected to contribute to 
easing medical problems in foreign countries especially those with expansive land 
areas that are facing a lack of medical resources.

5  Further Advancing Telemedicine

Toward the practical actualization of advanced telemedicine, there are still chal-
lenges such as sufåcient technology development for advanced telemedicine and 
legal system adjustment for early social implementation. Wireless communication 
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has characteristic challenges including the communication band, communication 
quality, and data communication trafåc, and how to transmit medical information 
required for advanced telemedicine is a key point.

The sophistication of 5G technology brings various new functions such as net-
work slicing, which provides dedicated networks with a high bandwidth or low 
latency by dividing the network virtually, and priority control of communication 
information in the application layer according to the communication situation using 
technologies such as AI.  With these technologies, the above challenges can be 
solved, and advance telemedicine can be provided stably anytime and anywhere.

The mobile communication system will become more advanced in the next 
decade, and 5G Evolution and 6G are expected as the next technologies beyond 
5G. There are mainly six target requirements for 6G technology: extremely high 
data rates/capacity exceeding 100 Gbps; extremely low latency of 1  ms or less; 
extreme coverage extension including sky, sea, and space; extremely high reliabil-
ity; extremely low energy/cost; and extreme massive connectivity/sensing [10]. In 
the 6G era, the delay in remote robotic surgery will be improved signiåcantly, and 
telemedicine sighted for cosmic space might be achieved in the future. Mobile com-
munication technology has great potential and is expected to contribute to the fur-
ther development of telemedicine.
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Future Trend: AI × XR (VR, AR)

Yuichiro Hayashi and Kensaku Mori

Abstract This chapter describes surgical assistance using artiåcial intelligence 
(AI) and extended reality (XR). AI technology can now analyze various data and is 
gaining ground in the medical åeld. XR technology enables the integration of vir-
tual environments with the real world. Computer-aided surgery (CAS) systems can 
be enhanced by combining these technologies. A surgical navigation system is a 
typical CAS system using AI and XR.  This system provides surgical assistance 
information about the anatomical structures in the operative åeld by fusing the real 
and virtual environments. In this chapter, we focus on surgical navigation systems 
using AI and XR and present our surgical navigation systems based on virtual 
endoscopy systems and their clinical applications.

Keywords Virtual reality · Augmented reality · Deep learning · Machine learning  
Visualization · Segmentation · Registration · Virtual endoscopy · Surgical 
navigation · Laparoscopic surgery

1  Introduction

AI technology, such as deep learning, has made remarkable progress and is used in 
various åelds. It is also expected to make headway in the medical åeld. AI technol-
ogy can analyze various data produced in the hospital and automatically generate 
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valuable information from these data. Therefore, computer-aided surgery (CAS) 
systems using AI technology have been studied for assisting surgeons during sur-
gery. AI technology is useful for generating surgical assistance information in these 
CAS systems. It is also important for the CAS system to present the assistance 
information in an easily understandable way. Extended reality or cross reality (XR) 
technology, a collective term for VR (virtual reality), AR (augmented reality), MR 
(mixed reality), and other related technologies, has also been attracting attention. 
These technologies allow us to experience a realistic virtual environment con-
structed on a computer. Furthermore, these technologies can augment information 
in the real world by combining the virtual environment and the real environment, as 
seen in the entertainment åeld in game applications. They are expected to enhance 
human machine interaction and extend human capabilities in many areas. XR tech-
nology has also been introduced into CAS systems to more effectively present sur-
gical assistance information.

The location and shape of anatomical structures in the human body differ for 
each patient. Understanding a patient’s speciåc anatomical structures is vital for 
surgeons when planning and performing surgery, and, thus, the ability of CAS sys-
tems to assist in understanding patient-speciåc anatomical structures has been stud-
ied. To obtain patient-speciåc anatomical information, various kinds of medical 
images are utilized. Imaging scanners such as X-ray computed tomography (CT) or 
magnetic resonance imaging (MRI) machines can capture three-dimensional (3D) 
internal anatomical structures in the human body. These medical images can be 
considered a virtualized human body (VHB) constructed on a computer that corre-
sponds to an individual patient in the real world [1]. Therefore, medical images 
(VHB) can be used to generate the virtual environment in XR.  XR technology 
enables observation and manipulation of medical images in the virtual environment. 
AI technology can thus provide a wealth of surgical assistance information from the 
huge amount of information in the medical images. AI technology can be also ana-
lyzed surgical scenes in the real environment captured by surgical microscopes or 
endoscopes, such as during laparoscopic surgery. Combining these AI and XR tech-
nologies substantially enhances the CAS system. Observation and analysis of the 
medical images (VHB) lead to preoperative diagnosis and surgical planning. In 
addition, surgical simulation can be performed by adding deformations to the medi-
cal images. Furthermore, surgical navigation can be performed by combining the 
medical images with the real human body during surgery.

In this chapter, we describe how AI and XR technologies provide surgical assis-
tance based on medical images. A typical CAS system using these technologies acts 
as a surgical navigation system. Various image processing techniques, dramatically 
improved by AI and XR, are used to construct surgical navigation systems. In this 
chapter, we explain the fundamentals, discuss recent research on surgical navigation 
systems, and show several examples and their clinical applications.
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2  Surgical Navigation System

2.1  System Conåguration

A surgical navigation system provides surgical assistance information synchronized 
with the operative åeld during surgery. To combine the virtual environment con-
structed from the medical images with the real world, this system mainly consists of 
three processes: (a) measurements of the surgical instrument position, (b) patient-
to-image registration, and (c) presentation of the surgical assistance image. The 
system årst measures the positions of the surgical instruments using a positional 
tracker and then generates surgical assistance images based on the obtained posi-
tional information and the medical images, such as CT or MRI images. To synchro-
nize the generation of the assistance images with the operative åeld, it is necessary 
to know the position of the surgical instruments on the medical image. Therefore, a 
registration process that aligns the coordinate systems between the positional tracker 
and the medical images is performed before generating the surgical assis-
tance images.

2.2  Measurements of Surgical Instrument Position

Real-time measurement of the 3D position and orientation of surgical instruments is 
necessary for performing surgical navigation. A 3D positional tracker is commonly 
used for this purpose. There are two types of position tracking methods, optical 
tracking and electromagnetic tracking, one of which is selected depending on the 
characteristics of each measurement method and type of surgery. Vision-based 
tracking methods that calculate the position of surgical instruments from endo-
scopic images have also been studied.

2.2.1  Optical Tracking Method

The optical tracking method uses two or more infrared (IR) cameras, and spherical 
markers reæecting IR light to track. Using multiple cameras, the 3D positions of the 
spherical makers are computed. The position and orientation of the surgical instru-
ments are measured by attaching three or more markers to them. Since it is often 
difåcult to attach the markers directly to the tip of the instruments, they are attached 
to appropriate locations on the surgical instruments. The position of the tip can be 
calculated using the positional relationship between the markers and the tip. This 
type of positional tracker provides wireless tracking and more precise measurement 
than the other tracking methods. However, if there is an obstruction between the IR 
cameras and the markers, the optical tracker cannot be measured.
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2.2.2  Electromagnetic Tracking Method

The electromagnetic tracking method can obtain the position and orientation of an 
electromagnetic (EM) sensor in the EM åeld by the EM åeld generator. Advantages 
of this method over the optical tracking method are that the size of the sensor is 
smaller and measurement is possible even with obstructions. Therefore, the position 
of a æexible endoscopic tip inside the body can be directly measured by attaching a 
small EM sensor to the tip. Furthermore, by attaching multiple sensors, the shape of 
the æexible endoscope can be estimated. However, the presence of metal causes 
measurement errors, and the sensor and EM åeld generator must be connected to 
the system control unit with a cable.

2.2.3  Vision-Based Tracking Method

Endoscopic and microscopic images are also used to obtain positional information. 
By directly calculating the camera position from these images, surgical navigation 
can be performed without the external positional tracker described above. Therefore, 
various vision-based camera tracking methods have been studied. A simultaneous 
localization and mapping (SLAM) framework is often used to compute the camera 
position and orientation [2, 3]. This method can estimate not only the camera posi-
tions but also the 3D shape of the organ in the images. The 3D organ shape can be 
used for the patient-to-image registration as follows. By aligning the 3D organ 
shapes reconstructed from the real endoscopic image and the medical images, we 
can obtain the position of the endoscope in the image coordinate system. Therefore, 
3D reconstruction of the organ shape or depth estimation from the endoscopic 
images [4, 5] and 3D pose estimation methods for surgical instruments in the endo-
scopic images [6] have also been studied. Scene recognition is also utilized to obtain 
roughly positional information from the endoscopic images. A recognition method 
of the surgical areas currently observed by surgeons using the laparoscope has been 
proposed [7]. The surgical navigation system can generate assistance information 
using the recognition results of the surgical areas without calculating the camera’s 
position.

2.3  Patient-to-Image Registration

To generate surgical assistance images corresponding to the position of surgical 
instruments, patient-to-image registration, which aligns the coordinate systems 
between the positional tracker and the medical image, is needed in the surgical navi-
gation system. This process computes a transformation from the positional tracker 

Y. Hayashi and K. Mori

https://pezeshkibook.com



215

coordinate system to the medical image coordinate system. Rigid transformation 
consisting of translation and rotation is typically used. The surgical navigation sys-
tem computes the positions of the surgical instruments on the medical images from 
their positions measured by the positional tracker using the transformation com-
puted by the registration process. Two types of registration methods can be used: 
point-based registration, which uses point correspondences, and surface-based reg-
istration, which uses the surface shape.

2.3.1  Point-Based Registration

In point-based registration, multiple åducial points are used for the registration. 
Artiåcial markers that are clearly visible on CT or MRI images or anatomical land-
marks that are distinct body points such as a bone process are used as the åducials. 
The positions of the åducials are measured in both the positional tracker and image 
coordinate systems, and the transformation matrix is calculated using their corre-
spondences. Let pi be the position of the i-th åducials in the positional tracker coor-
dinate system and qi be the position of the i-th åducials in the medical image 
coordinate system. The point-based registration computes the rigid transformation 
matrix T∗ by
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where N is the number of åducials [8].

2.3.2  Surface-Based Registration

In surface-based registration, the organ shapes are used for the registration. The 
rigid transformation matrix is usually computed from these shapes using the itera-
tive closest point (ICP) algorithm [8]. Here, we assume that the surface shape of the 
organ is represented by a point set. Let P = {pi| i = 1, ⋯, M} be the point set of the 
organ surface measured by the positional tracker and Q = {qj| j = 1, …, N} be the 
point set of the organ surface measured on the medical image. The ICP algorithm 
iteratively aligns the two point sets. For each point in point set P, the closest point 
in point set Q is obtained as the corresponding point. Using the obtained correspon-
dences, the rigid transformation matrix T is computed using the point-based regis-
tration method. Point set P then transforms using the rigid transformation matrix T, 
and the distance between the transformed point set P and point set Q is calculated. 
This registration process is repeated until the distance is smaller than the predeåned 
thresholding.
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2.3.3  Intraoperative Registration

The registration process is important to perform accurate surgical navigation. In the 
surgical navigation of soft tissues, tissue deformation increases registration error. 
Anatomical landmarks on the body surface are often used as the åducials. 
Registration error can occur due to differences in the patient’s posture between the 
image scan and surgery [9]. Furthermore, organ deformations due to surgical opera-
tions reduce the accuracy of surgical navigation during surgery. Therefore, several 
registration methods to reduce registration error using the internal anatomical struc-
tures during surgery have been considered [10–14]. These methods use the position 
of the blood vessels or landmarks on the organs as the åducials in point-based reg-
istration [10, 11] and organ surfaces for surface-based registration [12–14]. A regis-
tration error compensation method has been proposed that analyzes the positional 
information of the åducials, the guidance targets, and registration result in prior 
surgeries [15]. In addition, intraoperative imaging systems such as intraoperative 
MRI, C-arm, and ultrasound are used to capture the organ deformation during sur-
gery in the surgical navigation system [16–19]. Since the medical images captured 
by these intraoperative scanners are reæected tissue deformations during surgery, 
more accurate surgical navigation can be achieved by updating the medical images 
and registration based on the intraoperative images.

2.3.4  Vision-Based Registration

Vision-based registration methods without positional trackers have also been stud-
ied. These methods directly align optical images, such as endoscopic images, and 
3D medical images, such as CT images. Surgical navigation systems using a tablet 
PC perform the registration using the positions of the åducial markers or the ana-
tomical landmarks in both the camera images and CT images [3, 20]. The informa-
tion of the 3D organ shapes is also used for registration in the surgical navigation 
system for laparoscopic surgery [21–24]. There are studies on 2D-3D registration 
that aligns 3D organ shapes reconstructed from the CT images with the organ 
regions in 2D laparoscopic images [21, 22]. Registration methods using 3D point 
clouds reconstructed from the laparoscopic images and CT images have also been 
proposed [23, 24].

2.4  Presentation of Surgical Assistance Information

The surgical navigation system outputs patient-speciåc anatomical structures or 
surgical plans generated from the medical images as surgical assistance informa-
tion. The conventional surgical navigation system often displays the positions of the 
surgical instruments on the axial, sagittal, and coronal images of the CT or MRI 
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images. A 3D medical image visualization process is needed to observe the 3D 
anatomical structures in these images. The medical images and other information 
are further analyzed to generate surgical assistance information. This information is 
usually a monitor in the surgical navigation system. XR devices are sometimes used 
to make the surgical assistance information more comprehensible.

2.4.1  Visualization of Medical Images

Visualization of the medical images is performed to generate surgical assistance 
information to aid in the understanding of patient-speciåc 3D anatomical structures. 
Computer graphics techniques such as surface rendering or volume rendering meth-
ods are usually used to visualize the 3D medical images [1]. The surface rendering 
method renders the organ surface represented by triangular patches and so on. These 
triangular patches are generated from organ regions extracted from the medical 
images using the marching cubes algorithm. On the other hand, the volume render-
ing method assigns a color and opacity to each voxel in the medical images and 
performs ray-casting to visualize them. A virtual endoscopy system can generate 
virtual endoscopic views that depict the VHB from an arbitrary viewpoint in the 
virtual environment using these visualization methods [25]. This system is often 
used to generate surgical assistance images in the surgical navigation system for 
laparoscopic and other endoscopic surgeries.

2.4.2  Generation of Surgical Assistance Information

To enhance the important anatomical structures for surgery in the surgical assis-
tance images for visualization, these anatomical structures should be extracted 
from the medical images. Since manual segmentation of anatomical structures is 
time- consuming and labor intensive, automated segmentation methods for 
extracting various anatomical structures from the medical images have been pro-
posed. Multiple organs can be automatically extracted from CT images with high 
accuracy using deep learning [26, 27]. Fully convolutional networks (FCNs), 
such as U-Net or its variants, are commonly used for segmentation. In addition to 
the organ segmentation, methods for assigning extracted blood vessels or bron-
chial branches to anatomical names have also been considered [28, 29]. The 
extracted anatomical structures can be displayed in different colors in the ren-
dered images.

Other information, such as surgical plans, is displayed in the surgical navigation 
system. For example, a surgical navigation system using the optimal port placement 
planning method has been studied for determining port locations in laparoscopic 
surgery [30]. A brain risk area creation method has been introduced for decision- 
making using surgical navigation [31]. These methods select the optimal port place-
ment or brain risk area by analyzing data obtained during previous surgeries using 
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the surgical navigation system. Information such as surgical instrument motion 
from the surgical navigation system is also utilized for analyzing surgical proce-
dures [32].

2.4.3  Display of Surgical Assistance Image

Surgical assistance images can be displayed in a variety of ways. They are usually 
displayed on a monitor in the surgical navigation system. For endoscopic surgery, 
the important anatomical structures derived from the medical images are overlaid 
on the endoscopic images [11–13]. A surgical navigation system has been used to 
overlay the surgical assistant images on stereo images obtained from a stereo endo-
scope and display them on a 3D monitor [33]. Surgical navigation systems that 
superimpose the anatomical structures on the camera images of a tablet PC have 
also been developed [3, 20]. In addition, surgical assistance images have been pro-
jected onto the body surface using a projector [34, 35]. XR devices, such as a head 
mounted display (HMD), are also used to observe the surgical assistance informa-
tion [36, 37]. Optical see-through HMDs and video see-through HMDs can display 
the surgical assistance images overlaid onto a patient’s body in the real space.

3  Examples of Surgical Navigation Systems 
for Laparoscopic Surgery

3.1  Laparoscopic Surgery

Examples of surgical navigation for laparoscopic surgery are shown in this section. 
Minimally invasive surgery (MIS) such as laparoscopic surgery is widely per-
formed because of its patient beneåts. In laparoscopic surgery, a laparoscope and 
surgical instruments are inserted into the abdominal cavity through small incisions 
in the abdominal wall. Surgeons control these instruments while watching the lapa-
roscopic view displayed on a monitor. The limited åeld of view or limited work-
space in MIS, however, makes MIS more difåcult than conventional surgery. 
Patient anatomy beyond the limited view cannot be observed. Furthermore, impor-
tant anatomical structures often cannot be directly observed because they are 
obscured by other organs or tissues such as adipose tissue at the beginning of the 
surgery. Even if the important anatomical structures are visible, they may be difå-
cult to recognize in the operative åeld because their surface textures are similar to 
the surrounding tissues. It is vital to comprehend the patient-speciåc anatomical 
structures around the operative åeld during MIS. Therefore, a surgical navigation 
system can help surgeons understand patient-speciåc anatomical structures during 
laparoscopic surgery.
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3.2  Surgical Navigation System Based on Positional Tracker 
and Virtual Endoscopy System

3.2.1  System Overview

A virtual endoscopy system generates virtual endoscopic views from medical 
images such as CT and MRI images. By combining a surgical navigation system 
with a virtual endoscopy system, the virtual laparoscopic views corresponding to 
the operative åeld observed using a real laparoscope can be generated for surgical 
assistance information. This surgical navigation system consists of a 3D positional 
tracker and computer that runs a virtual endoscopy system [9]. Optical positional 
tracker markers or electromagnetic positional tracker sensors are attached to the 
laparoscope. The positional relationship between the markers and the laparoscopic 
tip is then measured to obtain the laparoscopic tip’s positional information. Before 
the surgical navigation, registration is performed to obtain a transformation matrix 
transformed from the coordinate system of the positional tracker to that of the medi-
cal image. Using the transformation matrix, the position and orientation of the lapa-
roscopic tip measured by the positional tracker are transformed into the position and 
orientation in the medical images. The virtual laparoscopic images corresponding to 
the position of the laparoscopic tip are generated using the virtual endoscope system 
based on the transformed positional information and the medical image. The posi-
tion of the surgical tools can also be displayed in the virtual endoscope image in the 
same way.

3.2.2  Surgical Navigation in Laparoscopic Gastrectomy

Surgical navigation was performed in laparoscopic gastrectomy for gastric cancer 
using this system [9]. The Polaris Spectra optical tracking system (NDI, Waterloo, 
Ontario, Canada) was used as the 3D positional tracker. The infrared camera of the 
Polaris system was mounted on an arm attached to the ceiling of the operating room 
(Fig. 1a). Reæective marker spheres were attached to the laparoscope (Fig. 1b), and 
the monitor for displaying the surgical assistance images was installed alongside the 
laparoscope monitor. We performed point-based registration to compute the rigid 
transformation using six anatomical landmarks as the åducials. These landmarks 
were the xiphoid process, the umbilicus, about 50 mm ~ 100 mm right and left of 
the umbilicus, and the right and left anterior superior iliac spine palpated through 
the body surface. The landmark positions in the image coordinate system were 
speciåed while observing a volume-rendered image of the CT images. The posi-
tions of the corresponding landmarks in the positional tracker coordinate system 
were measured by the tracked pointer. We converted the positional information of 
the laparoscopic tip from the Polaris system using the transformation matrix com-
puted in the registration process. The surgical navigation system generated the 
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a b

Fig. 1 Example of optical tracking system. (a) Infrared camera. (b) Spherical markers attached to 
laparoscope

virtual laparoscopic views in synchronization with the laparoscope position in real 
time using the virtual endoscopy system from preoperative CT images and the 
transformed positional information.

In laparoscopic gastrectomy for gastric cancer, the blood vessels around the stom-
ach need to be cut before resecting the stomach including the cancer. Since the 
branching patterns of the blood vessels differ from patient to patient, the branching 
patterns and positional relationship between the blood vessels and surrounding 
organs are important. Therefore, the artery, portal vein, liver, spleen, gallbladder, 
stomach, and pancreas were extracted from the arterial and portal venous phase con-
trast-enhanced CT images. Then, the extracted regions and CT images were rendered 
by a volume rendering method using a virtual endoscopy system. In the virtual lapa-
roscopic views, the extracted anatomical structures were displayed in different colors.

Figure 2 shows the surgical navigation scene. In this ågure, the laparoscope view 
from the real laparoscope is displayed on the right monitor, and the virtual laparo-
scopic view generated by the surgical navigation system is displayed on the left 
monitor. The red, blue, brown, dark brown, white, and yellow regions indicate the 
artery, portal vein, liver, spleen, gallbladder, and pancreas, respectively. The registra-
tion error was evaluated using the åducial registration error (FRE), which is the root 
mean square of the distance between the corresponding åducials after registration. 
Average and standard deviation of the FRE in 23 cases was 14.0 ± 5.6 mm. Although 
there were some registration errors, the surgical navigation system was able to pres-
ent the virtual laparoscopic views corresponding to the position of the laparoscope as 
a surgical assistance image. The surgeons were able to intuitively identify the ana-
tomical structures around the operative åeld by observing the virtual laparoscopic 
views synchronized with the laparoscope’s position. They conårmed the usefulness 
of the virtual laparoscopic views generated by the surgical navigation system.

3.2.3  Surgical Navigation in Laparoscopic Hepatectomy

The surgical navigation system was also used in a laparoscopic hepatectomy [38]. 
The Aurora electromagnetic tracking system (NDI, Waterloo, Ontario, Canada) 
was used in this surgical navigation. The electromagnetic åeld generator was placed 
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Fig. 2 Surgical navigation during laparoscopic gastrectomy for gastric cancer. The right and left 
monitors display the laparoscopic image from the laparoscope and surgical assistance image from 
the surgical navigation system, respectively. The red, blue, brown, dark brown, white, and yellow 
regions in the surgical assistance image indicate the artery, portal vein, liver, spleen, gallbladder, 
and pancreas, respectively

above the operating table, and magnetic sensors were attached to the laparoscope 
and forceps to measure their position and orientation. A monitor for displaying the 
surgical assistance images was installed alongside the laparoscope monitor. In this 
surgical navigation system, crosshair-shaped skin-afåxed markers, which were 
clearly depicted in the CT images, were attached on the body surface as the ådu-
cials, and point-based rigid registration was performed using these åducials. The 
virtual laparoscopic views were generated using the positional information from 
the Aurora system and the transformation matrix from the registration process. 
When resecting a tumor in the liver, the positional relationship between the tumor 
and surrounding blood vessels is important. Therefore, the liver, tumor, hepatic 
artery, portal vein, and hepatic vein were extracted from the arterial and portal 
venous phase contrast-enhanced CT images for generating the virtual laparoscopic 
views. The surgical navigation scene is shown in Fig. 3. The right monitor shows 
the virtual laparoscopic view, and the left monitor shows the real laparoscopic view. 
In this ågure, the brown, yellow, purple, and blue regions in the virtual laparoscopic 
views indicate the liver, tumor, portal vein, and hepatic vein, respectively. The sur-
gical navigation system was used to conårm the location of the tumor and the sur-
rounding blood vessels. Since the surgical navigation system can generate virtual 
laparoscopic views synchronized with the laparoscope’s motion, this system could 
help surgeons understand the positional relationships between anatomical 
structures.
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Fig. 3 Surgical navigation during laparoscopic hepatectomy. The right and left monitors display 
the surgical assistance image from the surgical navigation system and laparoscopic image from the 
laparoscope, respectively. The brown, yellow, purple, and blue regions in the surgical assistance 
image indicate the liver, tumor, portal vein, and hepatic vein, respectively

3.3  Surgical Navigation System Based on Scene Recognition 
of Laparoscopic Videos

3.3.1  System Overview

A surgical navigation system usually uses the laparoscope’s positional information 
to present the surgical assistance information around the operative åelds. If the sur-
gical area being operated on can be recognized from the laparoscopic view during 
surgery, the surgical navigation system could generate surgical assistance images 
around the operative åelds without the positional tracker. Therefore, a surgical navi-
gation system based on laparoscopic image recognition has been studied. As men-
tioned above, in laparoscopic gastrectomy for gastric cancer, since the blood vessels 
around the stomach are dissected, understanding of the blood vessel structures is 
vital. Therefore, the surgical navigation system generates information on the struc-
ture of the blood vessels based on the blood vessel currently being processed during 
surgery. This system recognizes the surgical areas from the laparoscopic views in 
real time and presents the surgical assistance images according to the recognition 
results. The surgical area recognition method is based on an image classiåcation 
method using deep learning [7]. This method classiåes each image extracted from 
laparoscopic videos into the following seven scenes: (1) the left gastroepiploic 
artery (LGEA) or the left gastroepiploic vein (LGEV) is observed, (2) the right 
gastroepiploic artery (RGEA) or the right gastroepiploic vein (RGEV) is observed, 
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(3) the right gastric artery (RGA) is observed, (4) the left gastric artery (LGA) or the 
left gastric vein (LGV) is observed, (5) the abdominal cavity is observed, (6) the 
laparoscope is inside the trocar, and (7) the laparoscope is outside the body. We 
selected DenseNet for the laparoscopic image classiåcation and trained it using 
laparoscopic images and their annotations for the seven scenes. During the surgical 
navigation, the system classiåes the laparoscopic images captured by the laparo-
scope into the seven scenes using the trained DenseNet. The surgical assistance 
images corresponding to each scene are generated in advance by visualizing the 
blood vessels and surrounding organs extracted from the contrast-enhanced CT 
images using the virtual endoscopy system. The surgical navigation system presents 
these surgical assistance images according to the image classiåcation results during 
surgery.

3.3.2  Surgical Navigation for Laparoscopic Gastrectomy

The surgical navigation system based on laparoscopic image recognition was used 
during laparoscopic gastrectomy for gastric cancer. Figure  4 shows the surgical 
navigation in action. In this ågure, the left monitor shows the surgical navigation 
system’s screen. The left side of the screen in the surgical navigation system shows 
the laparoscopic image captured from the laparoscope and its scene classiåcation 

Fig. 4 Surgical navigation using laparoscopic image recognition. The left monitor shows the sur-
gical navigation system screen. The left side of the screen shows the laparoscopic view from the 
laparoscope and its recognition result. This image is classiåed as a scene observing RGEA or 
RGEV. The right side of the screen is the surgical assistance image. The red, blue, dark brown, and 
yellow regions in the surgical assistance image indicate the artery, portal vein, spleen, and pan-
creas, respectively
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result. The right side of the screen shows the virtual laparoscopic image generated 
based on the classiåcation results. This system can provide surgical assistance 
images corresponding to the blood vessels being currently processed in the opera-
tive åeld without a positional tracker by recognizing the surgical area from the lapa-
roscopic image. By observing the virtual laparoscopic image in this system, 
surgeons can obtain information about the anatomical structures around the opera-
tive åelds such as blood vessel branching patterns.

4  Conclusions

This chapter described future trends for assisting surgery using AI and XR technolo-
gies. We introduced the surgical navigation system, which is a typical computer- 
aided surgery (CAS) system using AI and XR technologies. The surgical navigation 
system displays surgical assistance images generated from the medical images 
around the operative åeld. As shown in several examples, this system is useful for 
surgeons to comprehend patient-speciåc anatomical structures during surgery.

A challenge for the surgical navigation systems is dealing with tissue deforma-
tion during surgery. Accurate surgical navigation has been achieved for the rigid 
organs. However, for soft tissue surgical navigation, deformation reduces the accu-
racy of the surgical navigation. To achieve accurate surgical navigation for the soft 
tissues and nonrigid organs, it is necessary to measure the deformation of the tissues 
and organs during surgery and update the registration and surgical assistance infor-
mation. Currently, to improve the accuracy of the surgical navigation, intraoperative 
images are taken during surgery, or registration is performed using information 
from inside the body. In the future, more accurate surgical navigation would be 
performed by estimating the tissues and organ deformations from the surgical vid-
eos. The estimated deformations could be used to align endoscopic images with the 
preoperative medical images or generate surgical assistance images simulating the 
intraoperative deformation. Furthermore, if the surgical navigation system can rec-
ognize surgical situations by analyzing the surgical videos and other information in 
the operating room, the system will be able to present more appropriate surgical 
assistance information according to the surgical situation. Further developments in 
AI and XR technologies will improve the surgical navigation systems.

In the operating room, surgery is performed using many surgical devices. Robotic 
surgical systems have also been introduced in various surgical procedures. Analyzing 
the data from these devices in addition to the image analysis in the surgical naviga-
tion system will provide better surgical assistance. Information from the surgical 
navigation system will also be useful in controlling the robotic surgical system. We 
can therefore expect that new computer-aided surgery systems combining surgical 
navigation systems and surgical devices will be developed in the future.
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